
Abstract Model Counting: a novel approach for
Quantification of Information Leaks

Quoc-Sang Phan
Queen Mary University of London

q.phan@qmul.ac.uk

Pasquale Malacaria
Queen Mary University of London

p.malacaria@qmul.ac.uk

ABSTRACT
We present a novel method for Quantitative Information
Flow analysis. We show how the problem of computing
information leakage can be viewed as an extension of the
Satisfiability Modulo Theories (SMT) problem. This view
enables us to develop a framework for QIF analysis based
on the framework DPLL(T) used in SMT solvers. We then
show that the methodology of Symbolic Execution (SE) also
fits our framework. Based on these ideas, we build two
QIF analysis tools: the first one employs CBMC, a bounded
model checker for ANSI C, and the second one is built on top
of Symbolic PathFinder, a Symbolic Executor for Java. We
use these tools to quantify leaks in industrial code such as C
programs from the Linux kernel, a Java tax program from
the European project HATS, and anonymity protocols.

Categories and Subject Descriptors
H.1.1 [Systems and Information Theory]: Information
theory; D.4.6 [Security and Protection]: Information
flow controls; D.2.4 [Software/Program Verification]:
Formal methods, Model checking

Keywords
Quantitative Information Flow; Model Checking; Symbolic
Execution; Satisfiability Modulo Theories

1. INTRODUCTION AND BACKGROUND
Quantitative information flow analysis (QIF [14, 23]) is

a rigorous approach to “measure” information leakage. The
motivation for this approach is that absolute security is often
not achievable and programs with “small” leaks are usually
accepted as secure. QIF has attracted considerable attention
in recent years and has been applied to the formal analysis
of, for example, confidentiality of software [21, 5, 18, 27,
26], loss of anonymity in communication protocols [10], and
leakage of information via side-channel [22, 17].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ASIA CCS’14, June 03 - 06, 2014, Kyoto, Japan.
Copyright 2014 ACM 978-1-4503-2800-5/14/06 ...$15.00.
http://dx.doi.org/10.1145/2590296.2590328.

To introduce QIF, consider the data sanitization program
P from [27, 26], shown in Figure 1. Clearly only integer

base = 8;

if (H < 16) then O = base + H;

else O = base;

Figure 1: Data sanitization

values from 8 to 23 are possible outputs of this program. An
attacker has hence available 16 possible output observations:
observing outputs 9 .. 23 will know the secret H is 1 .. 15
and observing 8 will know the secret is 0 or greater than 15.
Assuming the attacker has no prior knowledge of the secret
H apart that is a 32 bits variable his a-priori probability of
guessing the value of H in one try is 1

232 , and the expected
probability of guessing the secret in one try after observing
the outputs is:

15

232
+

232 − 15

232

1

232 − 15
=

15

232
+

1

232
=

16

232

We can measure the leakage of the program as the difference
(of the − log base 2) between the probability of guessing the
secret before and after observing the outputs of the program;
in this case:

− log(
1

232
)− (− log

16

232
) = log(16) = 4

The fact that log(16) = log (number of output observations)
is not a coincidence. In fact a fundamental QIF result (the
channel capacity theorem [24, 33]) shows that leakage for a
program is always less or equal to the log of the number of
observables of the program. More importantly the theorem
holds if we consider not only the above notion of leakage
based on the probability of guessing the secret [33] but also
if we consider the notion of leakage based on information
theory measuring the number of bits leaked [14].

For these reasons counting the number of observables is
the basis of state-of-the-art QIF analysis, e.g. [18, 26, 22,
21], and also the basis for this work. The channel capacity
theorem also justifies the following:

Definition 1. Given a program P, QIF is the problem of
counting N , the number of possible outputs of P.

However the problem of an automated QIF analysis is still
very challenging. A simpler problem, called bounding QIF,
is considered in [34, 18]: deciding if a program P leaks less
than a constant q. In previous work, Yasuoka and Terauchi

have proved that bounding QIF is not a k-safety problem
for any k [34]. Cerny et al. then proved that in the case of
Shannon entropy, bounding QIF is PSPACE-complete [12].
So QIF and bounding QIF remain a huge challenge.

1.1 Overview and Contributions
In order to better frame the contributions of this paper

let us consider again the program P in Figure 1. In the
computer memory, O is stored as a bit vector b1b2..b32 such
that the first 27 bits, {b1, .., b27}, are 0 (otherwise O will
exceed 23) and the last 5 bits range from 01000 to 10111.

Suppose we have a logical formula ϕP that describes the
behaviour of P which contains a set of variables p1, p2, ..p32

representing the bits of the output O. A model of ϕP then
provides a truth assignment for the pi which corresponds to
a concrete value of the output O. In this way, the problem
of counting all possible outputs, is reduced to the model
counting problem on the logical formula ϕP . We name this
problem abstract model counting, from the traditional model
counting (#SAT) problem.

In summary, we introduce a theory-based technique which
provides a dramatic improvement on state-of-the-art QIF
analysis implementations. On the theoretical side, this work
establishes a connection between fundamental verification
algorithms and QIF. This connection is exploited to mitigate
the state explosion problem by developing a novel approach
for QIF based on SMT. More specific contributions are:

1. Introduction of a new research problem, #SMT, and
its applications to QIF and Symbolic Execution [20].

2. A framework, called #DPLL(T), to build a solver for
#SMT-based QIF.

3. The methodology of Symbolic Execution re-casted as
#DPLL(T).

4. Two prototyping tools for QIF analysis: sqifc built on
top of CBMC [15] and jpf-qif built on top of Symbolic
PathFinder [32].

5. Analysis of complex code, including new vulnerabilities
from the National Vulnerability Database of the US
government [2] and anonymity protocols.

The rest of the paper is organized as follows: we describe
the #SMT problem and our approach to QIF in Section 2.
To illustrate the approach, we provide case studies of real-
world applications in Section 3. Related work is mentioned
in Section 4. Section 5 concludes our work.

2. ABSTRACT MODEL COUNTING
Before introducing our approach, Symbolic QIF (or SQIF),

we recall the SMT problem, and define the new problem
#SMT.

Satisfiability Modulo Theories (SMT) is the problem of
checking the satisfiability of logical formulas over one or
more first-order theories T . Boolean abstraction of an SMT
formula ϕ, denoted by BA(ϕ), is a bijective function that
maps Boolean atoms into themselves and theory atoms (or
T -atoms) into fresh Boolean atoms. For example, below is a
SMT formula ϕ w.r.t. the theory of Linear Arithmetic and

its Boolean abstraction:

ϕ := {¬(x+ y > 1) ∨A1}
∧ {(x+ y > 1) ∨ ¬A2}
∧ {¬A3 ∨ (y − z < 7)}

BA(ϕ) := {¬B1 ∨A1}
∧ {B1 ∨ ¬A2}
∧ {¬A3 ∨B2}

We extend the traditional SMT problem to define a new
research problem, namely #SMT:

Definition 2. Given a formula ϕ w.r.t. combinations of
background theories T and its Boolean abstraction BA(ϕ),
propositional abstract model counting or #SMT is the
problem of computing the number of models of BA(ϕ) which
are consistent with ϕ. Such models of BA(ϕ) are also called
abstract models of ϕ.

Note that most SMT theories permit an infinite number of
models, but #SMT is always a finite number. Note also that
the result of #SMT depends on the syntax of the formula,
i.e. in our context the program syntax. For instance, the
two formulas ϕ1, ϕ2 as follows are equivalent but will have
different results in #SMT: ϕ1 = (x > 0) ∨ (x < 0) and
ϕ2 = ¬(x = 0).

State-of-the-art SMT solvers are in general the integration
of two components: (i) an enumerator integrating a SAT
solver enumerates truth assignments satisfying the Boolean
abstraction of the input formula; (ii) T -solvers validate the
consistency w.r.t. theories T of the (partial) assignment
produced by the SAT solver. Naturally, an SMT solver can
be extended into a #SMT solver by replacing the SAT solver
with a #SAT solver that can explicitly enumerate all models.

2.1 Symbolic QIF as a #SMT problem
The key idea behind SQIF is that instead of checking every

concrete value one by one, we process multiple values at
a time. To this aim, we need a representation denoting
a set of values. We consider a set of atomic propositions
Φ := {p1, p2, .., pM}, in which each pi corresponds to the bit
bi of the output O. For example the proposition p1 ∧ ¬p2

represents a family of sets representing up to 2M−2 concrete
values: all the bit configurations over M bits where the first
bit is 1 and the second bit is 0.

for all output bits bi, 1 ≤ i ≤M do
if (bi == 1) then

pi = True
else

pi = False
end if

end for

Figure 2: Symbolic representation

Obviously, without any constraints Φ can represent up to
2M possible values. With the constraints on the output O
imposed by the program P , the number of models of Φ is
down from 2M to a number N that we need to count. To
generate the formula of these constraints: the program P , to
which the code in Figure 2 has been appended at the end, is
first transformed into a logical formula ϕP w.r.t. theories T ,
e.g. by translating statements into Static Single Assignment
(SSA) form. Once P is encoded as a logical formula ϕP , then
we can apply model checking on P to verify the satisfiability
of ϕP . In other words, a model checker like CBMC is used
as a T -solver.

Program←→ Logical formula

Model checker←→ T -solver

If one accepts the view that each pi is a Boolean abstraction
of the T -atom expressing the constraints on bit bi, then
the QIF problem of counting N can be viewed as a #SMT
problem. In other words, with this view the QIF analysis
(Definition 1) is a #SMT problem.

The transformation from programs to logical formulas is
also exactly what bounded model checkers like CBMC do:
once a program is converted into a logical formula then its
satisfiability is checked with a SAT solver or an SMT solver.
We however can also use non SAT-based model checkers,
e.g. Java PathFinder (JPF) [1], as a T -solver. Our approach
does not depend on a programming language or the type of
model checker.

At this point we have defined the notation of a symbolic
representation Φ of the state space of the output O. In the
next section, we will describe a DPLL-based framework to
systematically explore Φ.

2.2 A #DPLL(T) for QIF
The first practical approach for #SAT is an extension

of DPLL [11] that enumerates all models. Modern #SAT
solvers, e.g. RelSat [9] and c2d [16], are more efficient
thanks to smarter approaches that exploit the structure of
the clauses and avoid explicitly enumerating models. In the
context of #SMT, however, explicit enumeration of abstract
models is necessary since we need to check the consistency
of each abstract model w.r.t. the background theory T . The
Symbolic QIF framework we propose here is a #DPLL(T)
tailored for QIF, by combining a simple DPLL-based #SAT
solver and a T -solver. Hence, this variant of #DPLL(T) is
a #SMT solver in the context of QIF.

A high level framework to explore the state-space and
quantify the leaks of confidential data is described by the
procedures SymbolicQIF and SymCount in Figure 3 and 4.

function SymbolicQIF(Φ,ϕP)
Ψ = ε, pc = ε, N = 0, i = 1
EarlyPrunning(Φ)
SymCount(Φ, Ψ, ϕP , N, pc, i)

return Ψ , log2(N)
end function

Figure 3: Symbolic QIF analysis

Φ, Ψ, ϕP and N are passed by reference, while pc and i are
passed by value. Φ is the symbolic representation of the
output described in the previous section, ϕP is the formula
representing the program P and Ψ is the set of models of ϕP .
N is the cardinality of Ψ , and the procedure SymbolicQIF

returns log2(N) as the channel capacity. M is the size of
the output data type, e.g. M = 32 if O is a 32-bit integer,
and i is the depth of the recursive call. The parameter pc is
a partial assignment of Φ, it is incrementally updated when
the search progresses. In SymCount, T -solver(ϕP , pc) means
the T -solver is called to check if there is a model of ϕP where
pc is (assigned to) True.

We illustrate the algorithm SymCount by running it on a
simple example (we ignore temporarily lines 2 and 3 that will
be clarified in section 2.4). Consider again the case study

1: function SymCount(Φ, Ψ, ϕP , N, pc, i)
2: if (N ≥ 2k) then return Insecure
3: end if
4: Extract pi from Φ
5: pc1 ← pc ∧ pi
6: if (T -solver(ϕP , pc1)) then
7: if (i == M) then
8: Ψ ← Ψ ∪ {pc1}
9: N ← N + 1

10: else
11: SymCount(Φ, Ψ, ϕP , N, pc1, i+ 1)
12: end if
13: end if
14: pc2 ← pc ∧ ¬pi
15: if (T -solver(ϕP , pc2)) then
16: if (i == M) then
17: Ψ ← Ψ ∪ {pc2}
18: N ← N + 1
19: else
20: SymCount(Φ, Ψ, ϕP , N, pc2, i+ 1)
21: end if
22: end if
23: end function

Figure 4: Symbolic counting for QIF

UNSAT

p1

p1 ∧ p2

p1 ∧ p2 ∧ p3

p1 ∧ p2 ∧ p3 ∧ p4

p1 ∧ p2 ∧ p3 ∧ p4 ∧ p5p1 ∧ p2 ∧ p3 ∧ p4 ∧ ¬p5

p1

p2

p3

p4

p5

Figure 5: Partial exploration path of SQIF for the
data sanitisation program from Figure 1.

of the data sanitization program in Figure 1. Only integer
values from 8 to 23 are possible outputs of this program,
which means the number of possible outputs is N = 16.
At the beginning, all variables are initialised as in Figure 3,
the method EarlyPrunning employs a heuristic that will be
discussed later in this section. The method SymCount is then
called to count the number of possible models of ϕP . When
a variable pi ∈ Φ is selected, we systematically explore in
the same way for both pi and ¬pi. Hence, the block of code
from line 5 to line 13, and the one from line 14 to line 22 in
Figure 4 are symmetric: we only explain the first one.

A partial run of SymCount on the illustrative example is
depicted in Figure 5. At the first call of SymCount: i = 1,
the variable p1 is in consideration and it is added to pc in
line 5. Since pc is initialised to be empty, pc1 = p1. The
T -solver is called to check if there is a model of ϕP where p1

is (assigned to) True. This can be done by using assertion
to check the validity of ¬p1 in a program as follows:

assert !p1;

A model checking tool like JPF or CBMC can be used as
a T -solver to verify this assertion and it will return True
if the assertion fails, and False otherwise. In this example,
the T -solver would return True since p1 stands for “first bit
is 1” and all odd values from 9 to 23 are possible outputs
satisfying the condition p1. Hence, SQIF proceeds by calling
SymCount with i = 2. Similarly, the procedure progresses
until calling SymCount with i = 5, which means it needs to
verify:

assert !(p1 && p2 && p3 && p4 && p5);

This time the T -solver would return False, since p1∧p2..∧p5

represents a set of outputs of which each element is at least
20 + 21 + ..+ 24 = 31, while the possible range of O is only
from 8 to 23. For a program with an output of 32-bits,
by using EarlyPrunning, SQIF trims a set of 227 concrete
values represented by the family of sets:

{Φ := {p1, p2, .., p32} : p1 ∧ p2 ∧ p3 ∧ p4 ∧ p5}

This is how the state-space explosion problem is mitigated.
At the depth i = 5 as above, if SQIF takes the path of
¬p5 from line 14, then the T -solver returns True (O = 15
is one of the models). Hence, the procedure continues with
i = 6, and from this point until i = 32, only the path of
¬pi is SAT. At i = 32, SQIF finds a full path 00..01111
which represents an output O = 15. This path is added to
Ψ , and SQIF increases N . Finally, at the end of the method
SymbolicQIF, we have Ψ = {8, 9, .., 23} and N = 16, thus we
can conclude that the data sanitization program in Figure 1
leaks at most 4 bits.

The method EarlyPrunning implements the idea that if
p1 is unsatisfiable, then p1∧C is also unsatisfiable for any C.
Therefore, at the beginning of the SymbolicQIF, all pi are
checked for satisfiability, and the results are stored for later
use. We note that EarlyPrunning speeds up SymbolicQIF

dramatically when the number of possible models (outputs
of the program) is small.

We have developed a prototyping tool for QIF analysis of
C programs, sqifc built on top of CBMC.

2.3 Symbolic Execution as #DPLL(T)
Symbolic Execution (SE) [20] is a powerful technique,

widely used in many domains of application such as test
data generation, partial verification, symbolic debugging,
and program reduction. Here we argue that:

Suppose a program is encoded into a logical formula then
a Symbolic Executor can be viewed as a #SMT solver for
this formula.

Intuitively, if we see a program as a logical formula, then
a concrete execution of the program corresponds to a model
of that formula. A symbolic path, which represents a set of
concrete executions, can be viewed as corresponding to the
Boolean abstraction of the set of models. Thus, a Symbolic
Executor, returning all symbolic paths of a program, can be
viewed as a #SMT solver.

Program←→ Logical formula

Concrete execution←→ Model of the formula

Symbolic path←→ Boolean abstraction of models

Example 1. To illustrate the idea, consider a simple C
program as follows:

if (x > 1) { y = x < 5 ? x + 10 : x;} else y = 0;

We denote the propositional variables: C1 as (x > 1), C2 as
(x < 5), A1 as (y1 = x + 10), A2 as (y2 = x), and A3 as
(y3 = 0). In this way, the program can be viewed as a Static
Single Assignment-like (SSA) logical formula:

(C1 → ((C2 → A1) ∧ (¬C2 → A2))) ∧ (¬C1 → A3)

This is a formula modulo the theory of linear arithmetic. In
the Boolean abstraction of the formula, A1, A2 and A3 are
pure literals and can be removed. The formula has hence
three models that can be written as:

{C1 ∧ C2, C1 ∧ ¬C2,¬C1}

This is also the set of possible symbolic paths generated by
running SE on the program.

1: function SymEx(P, σ, pc, l)
2: Execute assignment statements, update σ
3: if (l = EOF) then
4: Ψ ← Ψ ∪ {pc}
5: Σ ← Σ ∪ {σ}
6: return
7: end if
8: Extract {c, l>, l⊥} from if -statement
9: if (T -solver(pc ` c)) then

10: SymEx(P, σ, pc, l>)
11: else if (T -solver(pc ` ¬c)) then
12: SymEx(P, σ, pc, l⊥)
13: else
14: pc1 ← pc ∧ c
15: if (T -solver(pc1)) then
16: SymEx(P, σ, pc1, l>)
17: end if
18: pc2 ← pc ∧ ¬c
19: if (T -solver(pc2)) then
20: SymEx(P, σ, pc2, l⊥)
21: end if
22: end if
23: end function

Figure 6: Symbolic Execution

The above example suggests we can see SE as #SMT
solver, we will now derive SE in the #DPLL(T) framework.
Let us consider a program in SSA form and consisting of
only assignment statements and conditionals. Tools such as
CBMC and Soot [4] transform ANSI C and Java programs
into SSA to verify properties.

s1

s2 s3

p1
p1

p2 p2

H ≥ 16

pc := (H 16)

H < 16

pc := (H ≥ 16)<

pc ∧ p1 pc ∧ p1

pc ∧ p1 ∧ p2
pc ∧ p1 ∧ ¬p2

Figure 7: Partial exploration path of SQIF-SE for
the data sanitisation program from Figure 1.

The algorithm of SE is depicted in Figure 6. Here σ is
a symbolic environment, i.e. a map from program variables
to formulas over symbolic inputs. The parameter pc holds
the current path condition. At the end of the procedure,
Ψ will be the set of all path conditions and Σ will be the
set of all final symbolic environments, one for each path
condition. Statements in the program P are identified by
their program location l. For a conditional statement if

(c) I else I ′, symbols l> and l⊥ denote the locations of
the first statements in I and I ′ respectively. Notice that in
SymEx lines 9 to 12 can be viewed as T -propagation, and
lines 14 to 21 can be viewed as splitting in DPLL(T) [28].

In SymEx T -solver(pc ` c) calls the solver to check whether
c is a consequence of pc and T -solver(pc) calls the solver to
check whether pc is satisfiable.

We believe that the insight of SE as #DPLL(T) paves the
way for the development of efficient Symbolic Executors, by
exploiting techniques that have been successful in SMT such
as non-chronological backtracking and clause learning [31].

2.3.1 SQIF by Symbolic Execution:
With the view of SE as #DPLL(T), we are able to make

a Symbolic Executor work as SymbolicQIF with little effort.
The key idea here is to enumerate all concrete values from
symbolic executions.

For a program P that takes symbolic inputs i1, i2, ..iα,
and produces an output O, the result of running SE on P is
as follows:

O =

8>><>>:
f1(i1, i2.., iα) if pc1
f2(i1, i2.., iα) if pc2
.
fβ(i1, i2.., iα) if pcβ

9>>=>>;
where f1, f2, ..fβ are formulas over symbolic inputs i1, i2, ..iα.
pc1, pc2, ..pcβ are the path conditions. Notice fi expresses a
symbolic final value for O, i.e. in terms of SymEx instead of
fi(i1, i2.., iα) we could write σi(O) for σi ∈ Σ. The following
proposition was proved by King [20]:

Proposition 1.

∀i, j ∈ [1, β] ∧ i 6= j, pci ∧ pcj = ⊥

which means that path conditions are mutually exclusive.

Definition 3. For a path condition pci obtained from SE,
the concretization set of pci, denoted CS(pci), is the set
of all concrete values of output O that can be reached by
executing the program following pci.

Consider again the Example 1 in which there are three path
conditions: pc1 = C1∧C2, pc2 = C1∧¬C2, pc3 = ¬C1. The
corresponding concretization sets of these path conditions
are: CS(pc1) = [12..14], CS(pc2) = [5..2M], CS(pc3) = [0],
where M is the number of bits of the variable x. The set
of all possible values of output O is formed by the union of
concretization sets of all paths, and thus:

N =

˛̨̨̨
˛
β[
i=1

CS(pci)

˛̨̨̨
˛

The set CS(pci) can be computed by inserting the code in
Figure 2 at the end of the program and run SE: we add M
conditions, each one tests whether bit bi of the output O is
0 or 1. These M conditions test all the bits of the output

O. Exploring all possible combinations of these conditions
leads to enumerating all possible values of O. We denote by
SQIF-SE the implementation of SQIF using SE. A partial
exploration path of SQIF-SE is described as in Figure 7.
SE as implemented by Symbolic PathFinder (SPF) returns
a concrete values for each possible path. The number of
distinct concrete values is the N that we need to count.

SQIF-SE is implemented into a prototyping tool jpf-qif
built on top of SPF. The tool works on Java programs.

2.4 Soundness and Completeness
By soundness of the SQIF approach we mean that given

Ψ , log2(N) returned by SymbolicQIF(Φ,ϕP), each element
of Ψ is a model of ϕP i.e. corresponds to a possible value of
the output of the program P . By completeness of SQIF, we
mean that Ψ is the set of all models of ϕP i.e. all values of
the output of P .

Theorem 1. Given a sound (resp. complete) T -solver
the SQIF approach is sound (resp. complete) i.e. SymCount

solves the QIF problem (Definition 1).

Proof sketch 1. The SQIF algorithm as described in
Figure 4 is based on DPLL which itself is a depth-first search
procedure. As the search space is a binary tree with bounded
depth M , the number of bits of the output, the depth-first
search procedure is complete. The soundness of SQIF is
guaranteed by the soundness of the T -solver, i.e. model
checker.

In reality T -solvers are only complete in particular domains.
Moreover, even with sound and complete T -solvers, a large
leak requires an exponential number of calls to the T -solver
and so in practice SQIF is complete only for programs with
small leaks. SQIF-SE relies on a Symbolic Executor, and
hence it is complete in programs with a bounded model of
runtime behaviour, which means programs have no recursion
or unbounded loops. These are well-known issues in SE and
handling them is orthogonal to our work. Since our tools
are based on bounded model checker and bounded SE, we
choose to analyse only bounded programs. Notice however
that Theorem 1 holds for general T -solvers.

Because of these practical issues about completeness, it
has been proposed to shift the focus from the question “How
much does it leak?” to the simpler quantitative question
“Does it leak more than k?” [18, 34]. This approach not only
makes the problem easier to analysis, but it is also more
intuitive in term of security, because the user policy, i.e.
threshold k, is encoded in the analysis. The ultimate goal of
security analysis is to determine whether a program is secure
or insecure. As discussed in the previous section, the goal of
QIF is to relax security policy from non-interference to an
acceptable threshold k bits of interference, so that we can
tolerate “small” leak, and accept more programs as secure.
The SQIF approach can also be used in the same way: with
a user policy k, if SQIF finds out more than K = 2k possible
outputs, we can stop the procedure and conclude that the
program is insecure. This is the meaning of lines 2 and 3 of
function SymCount in Figure 4.

A straightforward consequence of the Theorem 1 is that,
assuming a sound T -solver, given a user policy k, SymCount
never returns secure for a program leaking more than k bits.
This can be formally expressed as:

Corollary 1. SQIF is sound w.r.t a user policy k.

3. CASE STUDIES
Only few papers present QIF static code analysis of real-

world applications: examples are [18], [22] and the more
recent [21]. Of these three approaches, [22] uses a different
attacker model, namely cache side-channels and so is not
directly comparable with our approach. The other two, [18]
and [21], use the same attacker model as we do but are at
the moment both restricted to C programs, and hence only
comparable to sqifc. We will concentrate on [18], to which
we refer as selfcomp, because it is based on the well-known
concept of self-composition [7]. sqifc is compared to [21]
in section 3.7. For the analysis of anonymity protocols, we
compare sqifc against QUAIL [3, 10], a state-of-the-art
quantitative analyser for probabilistic programs. The case
studies broadly fall in three categories:

• the first category, consisting of case studies from the
National Vulnerability Database of the US government
[2], is aimed to demonstrate how our analysis is able
to deal with complex C-code,

• the case studies CRC and Tax show the applicability to
quantify leakage in applications which leak by design,

• the case studies Grade and Dining cryptos protocols
show how our technique, even if it is unable to analyse
probabilistic programs, is able to computing channel
capacity for anonymity protocols.

The experiments are conducted on a desktop machine with
Intel Core i5 3.3GHz and 8GB of memory.

3.1 CVE-2011-2208
This case study is an example of a program that leaks

information when the attacker can control the public input.
It is taken from the National Vulnerability Database (NVD)
of the US government [2], and it is released on 13/06/2012.
The system call osf_getdomainname, depicted in Figure 8, in

1 int osf_getdomainname(char __user *name , int namelen)

2 {

3 unsigned len;

4 int i, error;

5
6 error = verify_area(VERIFY_WRITE , name , namelen);

7 if (error)

8 goto out;

9
10 len = namelen;

11 if (namelen > 32)

12 len = 32;

13
14 down_read (& uts_sem);

15 for (i = 0; i < len; ++i) {

16 __put_user(system_utsname.domainname[i],

17 name + i);

18 if (system_utsname.domainname[i] == ’\0’)

19 break;

20 }

21 up_read (& uts_sem);

22 out:

23 return error;

24 }

Figure 8: arch/alpha/kernel/osf sys.c

the Linux kernel before 2.6.39.4 leaks sensitive information
from kernel memory. This is caused by an integer signed-
ness error: the signed parameter namelen is assigned to the
unsigned variable len in line 10, so a negative value can be
transformed into a big positive one. Therefore, although the
condition in line 11 restricts namelen to 32, the number of
characters returned to the user via the structure name may
be much greater including bytes from kernel memory.

In order to quantify the information leakage caused by
this vulnerability, we chose the thresholds of security policy
K = 64 and K = 256, which means the program is secure
if it leaks less than 6 and 8 bits respectively. After the
times in Figure 11 , sqifc and selfcomp conclude that the
program is insecure. We then apply the patch provided for
this vulnerability, and run sqifc again. This time, sqifc
found only one possible value for name, which means a leak
of zero bit. Hence, we prove that the patch fixed the leak.

3.2 CVE-2011-1078
This case study is also taken from NVD, and it is released

on 21/06/2012. The function sco_sock_getsockopt_old in
the Linux kernel before 2.6.39, depicted in Figure 9, leaks
sensitive information from kernel memory. As in line 24,

1 static int sco_sock_getsockopt_old(

2 struct socket *sock , int optname ,

3 char __user *optval , int __user *optlen)

4 {

5 struct sock *sk = sock ->sk;

6 struct sco_conninfo cinfo;

7 int len , err = 0;

8 ...

9
10 lock_sock(sk);

11
12 switch (optname) {

13 case SCO_OPTIONS:

14 ...

15
16 case SCO_CONNINFO:

17 ...

18
19 cinfo.hci_handle = sco_pi(sk)->conn ->hcon ->handle;

20 memcpy(cinfo.dev_class ,

21 sco_pi(sk)->conn ->hcon ->dev_class , 3);

22
23 len = min_t(unsigned int , len , sizeof(cinfo));

24 if (copy_to_user(optval , (char *)&cinfo , len))

25 err = -EFAULT;

26 break;

27 ...

28 }

29
30 release_sock(sk);

31 return err;

32 }

Figure 9: net/bluetooth/sco.c

cinfo is copied to the user. Although its total size is 5
bytes, and all bytes are correctly assigned, when compiled it
includes an additional padding byte for alignment purposes.
This padding byte is not zeroed out, and hence it contains
kernel memory, and is leaked to the user. Results of the
analysis for K = 8 and K = 64, are shown in Figure 11.

3.3 Cyclic Redundancy Check
The program in Figure 10 performs Cyclic Redundancy

Check1 (CRC) and shifts right the result sft bits. We also
have a Java version of the program to test with jpf-qif. We
quantify the amount of information of the confidential input
ch revealed by observing the output of function GetCRC8.
We analyse this program with sqifc, jpf-qif and selfcomp
for sft values of 3 and 5 giving a maximum leakage for
this program of 5 (selfcomp times out on this case) and 3
bits respectively which is consistent with the design of the
program. Results of the analysis for are shown in Figure 11.
In the case value of sft is 5, i.e. K = 8, selfcomp is faster as
the state-space is still small enough, and selfcomp requires
only one call to CBMC. When sft = 3, i.e. K = 32, the
state-space explosion makes selfcomp fail to solve. SQIF

1http://en.wikipedia.org/wiki/Cyclic redundancy check

http://en.wikipedia.org/wiki/Cyclic_redundancy_check

unsigned char GetCRC8(

unsigned char check , unsigned char ch)

{

int i, sft ;

for (i = 0 ; i < 8 ; i++) {

if (check & 0x80) {

check <<=1;

if (ch & 0x80) { check = check | 0x01;}

else { check =check & 0xfe; }

check = check ^ 0x85;

} else {

check <<=1;

if (ch & 0x80) { check = check | 0x01; }

else { check = check & 0xfe; }

}

ch <<=1;

}

check >>= sft;

return check;

}

Figure 10: Cyclic Redundancy Check

requires several calls to the solver, but it is less vulnerable
to state-space explosion.

3.4 Tax Record
Balliu et al. [6] provided a very interesting case study

of information flow security in Java programs derived from
the EU-funded FP7-project HATS. The program contains 8
classes/interfaces and 267 LoC. In our analysis we assume
the year 2011-2012 basic tax rate in UK, which is applied for
a person whose income does not exceed 35 thousand pounds
per annum, is F = 20%2. Thus, the tax is less than 7
thousands pound per annual. We assume that donations to
charities is below the amount of tax to be paid. Obviously,
one cannot pay more than what one earns. Following [6] we
are interested in leaks of a taxpayer’s income and donations
to a Tax checker.

3.4.1 QIF vs. Declassification
Balliu et al. considered two cases of declassification: the

first one, called taxChecker1, is associated with the policy
”income×F% +donation > payment”, and the second one,
called taxChecker2, is associated with the policy ”income×
F% +donation−payment”. They claimed that: ”The value
declassified in the taxChecker1 case, resp. taxChecker2 case,
is a lower bound, resp. upper bound, of the value revealed to
the tax checker in the fixed tax rate variant.”

We notice in this sentence the use of terms like ”value
revealed” and ”bound”: the authors were trying to describe
quantitative concepts. From the result of jpf-qif, we can
give hence quantitative answers to these questions. In the
case of taxChecker1, the observable is whether the payment
is greater or smaller than the sum of the tax and donations,
which means there are 2 possible outputs. This corresponds
to the leak of 1 bit. In other words, the user policy or
threshold k = 1. Regarding the taxChecker2 case, under
the assumptions listed above, the leakage is upper bounded
by 4.86 bits obtained in 24.988 seconds.

3.5 The Grade Protocol
This case study was used to illustrate protocol analysis

in [19, 10]. This anonymity protocol is designed to enable a
group of students to compute the sum of their grades (e.g.,
to compute the average) without revealing individual grades.

2Since SPF can only handle conditions with integer values,
we simplify the code by replacing (income×20)/100 with tax
as an integer. The simplification we made does not change
the secrecy, i.e. entropy, of income, so it will not affect the
result of our analysis.

We denote S1, ..., Sk be the k students arranged in a ring,
each one is given a secret grade gi between 0 and m− 1. To
compute the sum of gi without disclosing them, the students
produce k random numbers between 0 and n = (m−1)k+1
such that the number ri is known only to the students Si
and S(i+1)%k. Each student si then outputs a number di =
gi + ri − r(i+1)%k and the sum of all grades is equivalent to
the sum of the outputs modulo n.

1 int func (){

2 size_t S = 5, G = 5, i = 0, j = 0;

3 size_t n = ((G-1)*S)+1, sum = 0;

4 size_t numbers[S], announcements[S], h[S];

5
6 for (i = 0; i < S; i++) h[i] = nondet_int () % G;

7
8 for (i = 0; i < S; i++)

9 numbers[i] = nondet_int () % n;

10
11 while (i<S) {

12 j=0;

13 while (j<G) {

14 if (h[i]==j)

15 announcements[i] =

16 (j+numbers[i]-numbers [(i+1)%S])%n;

17 j=j+1;

18 }

19 i=i+1;

20 }

21
22 for (i = 0; i < S; i++)

23 sum += announcements[i];

24
25 return sum % n;

26 }

Figure 12: The Grade protocol

This protocol is implemented as a probabilistic program in
both [19] and [10]. Here we implement it in standard ANSI
C with the built-in non-deterministic functions of CBMC.
The source code, shown on Figure 12, is based on the one
provided in [10]. The array h[S] stores the grades of all
students, i.e. the secret. The attacker can observe sum % n.

To compare QUAIL with our tool, sqifc, we repeat the
experiment of the authors for the grade protocol with the
tool and examples provided in [3]. However, QUAIL timed
out after 1 hours for most of the cases, as showed in Figure
15 (we had the same results of leakage with the authors in
the cases the tool did not time out). Therefore, we take the
result in Figure 13 directly from the paper [10]. Comparing
Figure 13 and Figure 14, it is easy to realise that the bounds
on the leaks, measured by sqifc, do not exceed the real
leaks, measured by QUAIL, by more than 1 bit, while sqifc
required no more than 1 minutes in all cases as showed in
Figure 16.

3.6 The Dining cryptos protocol
This case study is a variation of the dining cryptographers

protocol of Chaum [13], one of the most popular problem
in anonymity protocol. There is a group of cryptographers
gathering around a table for dinner. After the meal, they are
informed that the bill has been paid by someone, who could
be one of them or the National Security Agency (NSA). Even
though the cryptographers respect each other’s right to make
an anonymous payment, they want to find out whether the
NSA paid. To determine this, they use a protocol as follows:
each pair of adjacent cryptographers toss a coin hidden from
everybody else, so that each cryptographer only knows the
values of the coin shared with the one on his left and with
the one on his right; then each cryptographer declares aloud
the exclusive OR of the two coins he sees, i.e. 0 if they have
the same value and 1 otherwise. However if the payer is one

Case Study LoC Language sqifc time jpf-qif time selfcomp time
Data Sanitization < 10 C/Java 11.898 20.695 timed out

CVE-2011-2208 (64) > 200 C 22.759 - 119.117
CVE-2011-2208 (256) C 88.196 - timed out
CVE-2011-1078 (8) > 200 C 10.380 - 13.853
CVE-2011-1078 (64) C 37.899 - timed out

CRC (8) < 30 C/Java 1.209 8.386 0.498
CRC (32) C/Java 8.657 9.357 timed out

Tax Record 267 Java - 24.988 -

Figure 11: Times in seconds, timeout is 30 minutes. “-” means inapplicable.

(a) Students
2 3 4 5

G
ra

d
e
s 2 1.500 1.811 2.030 2.198

3 2.197 2.525 2.745 2.910
4 2.655 2.984 3.201 3.365
5 2.999 3.325 3.541 timed out

Figure 13: Leakage measured by QUAIL

(b) Students
2 3 4 5

G
ra

d
e
s 2 1.585 2.000 2.322 2.585

3 2.322 2.807 3.170 3.459
4 2.807 3.322 3.700 4.000
5 3.170 3.700 4.087 4.392

Figure 14: Leakage measured by sqifc

1 size_t func (){

2
3 size_t N = 5, output = 0, i = 0;

4 size_t coin[N], obscoin [2], decl[N];

5 size_t h;

6
7 h = nondet_uchar () % (N+1);

8
9 for (i = 0; i < N; i++){

10 coin[i] = nondet_uchar () % 2;

11 }

12
13 for (i = 0; i < N; i++){

14 decl[i] = coin[i] ^ coin[(i+1)%N];

15 if (h==i+1){

16 decl[i] = !decl[i];

17 }

18 i = i+1;

19 }

20
21 for (i = 0; i < N; i++){

22 output = output + decl[c];

23 }

24
25 return output;

26 }

Figure 18: The Dining cryptos protocol

of the cryptographers, he declares the opposite. In the end,
if the sum of all declared values is even, then it is concluded
that the NSA paid the bill. On the other hand, the sum is
odd means one of the cryptographers did it.

We are interested in knowing how much information about
the payer can be leaked by the sum of all declared values (in
the dining cryptographers the observation are the declared
values instead). The input code for the protocol is depicted
in Figure 18. h is the identity of the payer, i.e. the secret,
output is the observable. The coin toss is modelled by a
built-in non-deterministic function in line 10. This model is
less precise than implementation in probabilistic programs
where it is possible to select random values from a specific
distribution. By modelling with non-deterministic function
and computing channel capacity, we can only compute the
maximum leakage in all possible distributions. The channel
capacity computed by sqifc is showed in Figure 17.

3.7 Optimizing SymCount

One source of inefficiency in the implementation of sqifc
is that: in each call to CBMC, the transformation from the
source code to the logical formula ϕP is recomputed. This
can be very costly when the program is large or many calls

to CBMC are needed. A simple optimisation to tackle this
problem is to use CBMC to compute ϕP once and for all,
and then use a SAT or SMT solver to check ϕP together
with the appropriate assertion at line 6 or 15 of SymCount.
We denote the resulting implementation sqifc+: it analyses
CRC(8) in 0.289 and CRC(32) in 0.475 seconds respectively:
an average improvement well over 1000% over sqifc.

We believe the performance of sqifc+ is comparable to
the technique in [21] for programs with small leaks but it is
outperformed when analysing programs with large leaks (a
precise comparison is not possible as all but one programs
in [21] have large leaks), however we don’t see this as a
big issue: the main point of QIF is to determine whether a
program leaks a small amount and hence can be considered
a secure program, and while the meaning of “small leak” is
context dependent it is difficult to see contexts where leaks
much larger than 10 bits can be considered small.

4. RELATED WORK
Meng and Smith introduce an approximate technique to

calculate an upper bound on channel capacity in [26]. The
authors’ implementation of the method is largely manual,
and we proposed an automation for it in [30]. While the
work of Meng and Smith is very inspiring, the technique can
be very imprecise, for example when the leaks are sparse in
the state space. Moreover, the user policy is not encoded
in the analysis which makes it infeasible when the leaks are
not small. Take an example of a program that leaks all 32
bits of integral confidential data, it needs to make 64 calls to
STP solver to determine that all bits are Non-fixed. Then,
in order to determine two bit patterns of (31*32)/2 = 496
pairs of Non-fixed bits, it needs to make another 496 * 4 =
1984 calls to STP solver, so it is 2048 calls in total.

The first automated method for QIF was proposed by
Backes et al. [5]. The method can be divided into two stages:
first, it employs model checking to compute an equivalence
relation R on the set of confidential inputs w.r.t. observable
outputs; secondly, if this relation R can be represented by a
system of linear integer inequalities Ax̄ > b̄, which means it
is a bounded integer polytopes, then a variant of Barvinok’s
algorithm [8] can be used to count the number of integer

(c) Students
2 3 4 5

G
ra

d
e
s 2 1.306 241.483 - -

3 28.613 - - -
4 508.313 - - -
5 - - - -

Figure 15: Elapsed time in seconds of QUAIL

(d) Students
2 3 4 5

G
ra

d
e
s 2 5.657 7.029 10.767 9.469

3 9.145 11.597 17.987 20.930
4 10.095 16.872 21.869 18.579
5 14.639 20.666 33.298 40.399

Figure 16: Elapsed time in seconds of sqifc

cryptos 3 4 5 6 50 100 200 300
Channel capacity 2 2.32 2.59 2.81 5.672 6.658 7.651 8.234
Time in seconds 2.145 3.496 3.632 18.634 46.970 158.517 587.670 3326.915

Figure 17: The dining cryptos protocol analysed by sqifc

solutions of R. While this work is important as the first
effort on automation of QIF analysis, it is not clear however
how this approach can be applied to real-world programs
because of, for example, bit-wise operators in the CRC case
study or non-linear relations and so on.

Closer to our work is the paper of selfcomp [18] discussed
in the previous section. However, as already outlined their
approach to address the question ”Does it leak more than
k?” is quite different from ours. Köpf et al. [22] also apply
QIF to real-world applications, i.e. leakage of cache side-
channels; their technique is based on abstract interpretation
and hence not based on bounded models. Because of this
however they over-approximate channel capacity.

A preliminary version of the algorithm SymCount has been
presented in a workshop [30]. In our previous work, we also
used Symbolic Execution for qualitative information flow
analysis [29]. A recent paper [21] explores QIF in a pure
logical framework. The approach is powerful and elegant,
however it is more limited when compared to our approach
as it relies on the solver to generate models whereas our
approach can use any solver instead. For example we can
analyse Java by using JPF as a solver for bytecode even if
JPF doesn’t generate a model in the sense of [21].

McCamant and Ernst released FlowCheck [25], a tool for
security testing based on dynamic taint analysis. What
FlowCheck measures is the number of tainted bits, not an
information-theoretic bound, so it is significantly different
from our approach. Another tool is described in [27], it is
able to analyse large programs using the notion of channel
capacity in the context of dynamic taint analysis, while our
approach is based on verification techniques. In this sense,
our work comes with stronger theoretical guarantees.

5. CONCLUSION AND FUTURE WORK
We introduce Abstract Model Counting, a novel approach

based on SMT for the quantification of information leaks
for real-world applications. Although our implementation
is far from being optimised, it drastically outperforms the
existing technique based on self-composition. Our approach
is applicable to programs with difficult data structures such
as pointers, and to Java bytecode.

An original contribution of this work on the theoretical
side is: the establishment of connections between measuring
confidentiality leaks and fundamental verification algorithms
like Symbolic Execution, SMT solvers and DPLL. As a first
consequence of these connections we have developed new
QIF techniques implemented on two prototype tools for C

and Java respectively. We have demonstrated the potential
of these tools on C and Java code and argued that while
measuring large leaks remains an infeasible task, the most
interesting case, i.e. verifying whether a program only leaks
a small amount of the secret may be dramatically improved
by the techniques here introduced.

An immediate direction for investigation is: instead of
dealing with programs as hidden formulas as in this paper,
we may view it as an SMT formula w.r.t. the theory of
Quantified Bit-Vector, and work directly with the formula.
Other interesting directions include to explore the possibility
of analysing anonymity protocols under specific probability
distributions.

6. ACKNOWLEDGEMENTS:
We thank Dino Distefano, Nikos Tzevelekos, Vladimir

Klebanov and the anonymous reviewers for their valuable
constructive comments. Pasquale Malacaria’s research was
supported by grant EP/K032011/1.

7. REFERENCES
[1] Java PathFinder.

http://babelfish.arc.nasa.gov/trac/jpf/.

[2] National Vulnerability Database.
http://nvd.nist.gov/.

[3] QUAIL. https://project.inria.fr/quail/.

[4] Soot: a Java Optimization Framework.
http://www.sable.mcgill.ca/soot/.

[5] Backes, M., Kopf, B., and Rybalchenko, A.
Automatic discovery and quantification of information
leaks. In Proceedings of the 2009 30th IEEE
Symposium on Security and Privacy (Washington,
DC, USA, 2009), SP ’09, IEEE Computer Society,
pp. 141–153.

[6] Balliu, M., Dam, M., and Guernic, G. L. Encover:
Symbolic exploration for information flow security. In
Proceedings of the 2012 IEEE 25th Computer Security
Foundations Symposium (Washington, DC, USA,
2012), CSF ’12, IEEE Computer Society, pp. 30–44.

[7] Barthe, G., D’Argenio, P. R., and Rezk, T.
Secure information flow by self-composition. In
Proceedings of the 17th IEEE workshop on Computer
Security Foundations (Washington, DC, USA, 2004),
CSFW ’04, IEEE Computer Society, pp. 100–.

[8] Barvinok, A. I. A polynomial time algorithm for
counting integral points in polyhedra when the

http://babelfish.arc.nasa.gov/trac/jpf/
http://nvd.nist.gov/
https://project.inria.fr/quail/
http://www.sable.mcgill.ca/soot/

dimension is fixed. Math. Oper. Res. 19, 4 (Nov.
1994), 769–779.

[9] Bayardo, R. J. RelSat: A Propositional Satisfiability
Solver and Model Counter.
http://code.google.com/p/relsat/.

[10] Biondi, F., Legay, A., Traonouez, L.-M., and
Wasowski, A. Quail: A quantitative security
analyzer for imperative code. In Proceedings of the
25th international conference on Computer Aided
Verification (Berlin, Heidelberg, 2013), CAV’13,
Springer-Verlag.

[11] Birnbaum, E., and Lozinskii, E. L. The good old
davis-putnam procedure helps counting models. J.
Artif. Int. Res. 10, 1 (June 1999), 457–477.

[12] Cerny, P., Chatterjee, K., and Henzinger,
T. A. The complexity of quantitative information flow
problems. In Proceedings of the 2011 IEEE 24th
Computer Security Foundations Symposium
(Washington, DC, USA, 2011), CSF ’11, IEEE
Computer Society, pp. 205–217.

[13] Chaum, D. The dining cryptographers problem:
unconditional sender and recipient untraceability. J.
Cryptol. 1, 1 (Mar. 1988), 65–75.

[14] Clark, D., Hunt, S., and Malacaria, P. A static
analysis for quantifying information flow in a simple
imperative language. J. Comput. Secur. 15, 3 (Aug.
2007), 321–371.

[15] Clarke, E., Kroening, D., and Lerda, F. A tool
for checking ANSI-C programs. In Tools and
Algorithms for the Construction and Analysis of
Systems (TACAS 2004) (2004), vol. 2988 of Lecture
Notes in Computer Science, Springer, pp. 168–176.

[16] Darwiche, A. The c2d Compiler.
http://reasoning.cs.ucla.edu/c2d/.

[17] Doychev, G., Feld, D., Köpf, B., Mauborgne,
L., and Reineke, J. Cacheaudit: A tool for the static
analysis of cache side channels. In Proceedings of the
22Nd USENIX Conference on Security (Berkeley, CA,
USA, 2013), SEC’13, USENIX Association,
pp. 431–446.

[18] Heusser, J., and Malacaria, P. Quantifying
information leaks in software. In Proceedings of the
26th Annual Computer Security Applications
Conference (New York, NY, USA, 2010), ACSAC ’10,
ACM, pp. 261–269.

[19] Kiefer, S., Murawski, A. S., Ouaknine, J.,
Wachter, B., and Worrell, J. Apex: an analyzer
for open probabilistic programs. In Proceedings of the
24th international conference on Computer Aided
Verification (Berlin, Heidelberg, 2012), CAV’12,
Springer-Verlag, pp. 693–698.

[20] King, J. C. Symbolic execution and program testing.
Commun. ACM 19, 7 (July 1976), 385–394.

[21] Klebanov, V., Manthey, N., and Muise, C.
Sat-based analysis and quantification of information
flow in programs. In Quantitative Evaluation of
Systems, vol. 8054 of Lecture Notes in Computer
Science. Springer Berlin Heidelberg, 2013,
pp. 177–192.

[22] Köpf, B., Mauborgne, L., and Ochoa, M.
Automatic quantification of cache side-channels. In
Proceedings of the 24th international conference on

Computer Aided Verification (Berlin, Heidelberg,
2012), CAV’12, Springer-Verlag, pp. 564–580.

[23] Malacaria, P. Assessing security threats of looping
constructs. In Proceedings of the 34th annual ACM
SIGPLAN-SIGACT symposium on Principles of
programming languages (New York, NY, USA, 2007),
POPL ’07, ACM, pp. 225–235.

[24] Malacaria, P., and Chen, H. Lagrange multipliers
and maximum information leakage in different
observational models. In Proceedings of the third ACM
SIGPLAN workshop on Programming languages and
analysis for security (New York, NY, USA, 2008),
PLAS ’08, ACM, pp. 135–146.

[25] McCamant, S., and Ernst, M. D. Quantitative
information flow as network flow capacity. In
Proceedings of the 2008 ACM SIGPLAN conference
on Programming language design and implementation
(New York, NY, USA, 2008), PLDI ’08, ACM,
pp. 193–205.

[26] Meng, Z., and Smith, G. Calculating bounds on
information leakage using two-bit patterns. In
Proceedings of the ACM SIGPLAN 6th Workshop on
Programming Languages and Analysis for Security
(New York, NY, USA, 2011), PLAS ’11, ACM,
pp. 1:1–1:12.

[27] Newsome, J., McCamant, S., and Song, D.
Measuring channel capacity to distinguish undue
influence. In Proceedings of the ACM SIGPLAN
Fourth Workshop on Programming Languages and
Analysis for Security (New York, NY, USA, 2009),
PLAS ’09, ACM, pp. 73–85.

[28] Nieuwenhuis, R., Oliveras, A., and Tinelli, C.
Solving sat and sat modulo theories: From an abstract
davis–putnam–logemann–loveland procedure to
dpll(t). J. ACM 53, 6 (Nov. 2006), 937–977.

[29] Phan, Q.-S. Self-composition by Symbolic Execution.
In 2013 Imperial College Computing Student
Workshop (Dagstuhl, Germany, 2013), vol. 35 of
OpenAccess Series in Informatics (OASIcs), Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik,
pp. 95–102.

[30] Phan, Q.-S., Malacaria, P., Tkachuk, O., and
Păsăreanu, C. S. Symbolic quantitative information
flow. SIGSOFT Softw. Eng. Notes 37, 6 (Nov. 2012),
1–5.

[31] Prosser, P. Hybrid algorithms for the constraint
satisfaction problem. Computational Intelligence 9
(1993), 268–299.

[32] Păsăreanu, C. S., Visser, W., Bushnell, D.,
Geldenhuys, J., Mehlitz, P., and Rungta, N.
Symbolic pathfinder: integrating symbolic execution
with model checking for java bytecode analysis.
Automated Software Engineering (2013), 1–35.

[33] Smith, G. On the foundations of quantitative
information flow. In Proceedings of the 12th
International Conference on Foundations of Software
Science and Computational Structures (Berlin,
Heidelberg, 2009), FOSSACS ’09, Springer-Verlag,
pp. 288–302.

[34] Yasuoka, H., and Terauchi, T. On bounding
problems of quantitative information flow. Journal of
Computer Security 19, 6 (2011), 1029–1082.

http://code.google.com/p/relsat/
http://reasoning.cs.ucla.edu/c2d/

	Introduction and Background
	Overview and Contributions

	Abstract model counting
	Symbolic QIF as a #SMT problem
	A #DPLL() for QIF
	Symbolic Execution as #DPLL()
	SQIF by Symbolic Execution:

	Soundness and Completeness

	Case Studies
	CVE-2011-2208
	CVE-2011-1078
	Cyclic Redundancy Check
	Tax Record
	QIF vs. Declassification

	The Grade Protocol
	The Dining cryptos protocol
	Optimizing SymCount

	Related Work
	Conclusion and Future Work
	Acknowledgements:
	References

