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ABSTRACT
We introduce a methodology, based on symbolic execution, for
Concurrent Bounded Model Checking. In our approach, we trans-
late a program into a formula in a disjunctive form. This de-
sign enables concurrent verification, with a main thread running
symbolic execution, without any constraint solving, to build sub-
formulas, and a set of worker threads running a decision procedure
for satisfiability checks.

We have implemented this methodology in a tool called JCBMC,
the first bounded model checker for Java. JCBMC is built as an
extension of Java Pathfinder, an open-source verification platform
developed by NASA. JCBMC uses Symbolic PathFinder (SPF)
for the symbolic execution, Z3 as the solver and implements con-
currency with multi-threading.

For evaluation, we compare JCBMC against SPF and the Bounded
Model Checker CBMC. The results of the experiments show that
we can achieve significant advantages of performance over these
two tools.

Categories and Subject Descriptors
D.1.3 [Concurrent Programming]: Parallel programming; D.2.4
[Software/Program Verification]: Formal methods

General Terms
Algorithms, Performance, Theory, Verification

Keywords
Bounded Model Checking; Concurrency; Symbolic Execution

1. INTRODUCTION
Bounded Model Checking (BMC) [8] is a popular verification
technique that works by unwinding the transition relation of a
program for a fixed number of steps k and checking whether a
property violation can occur in k or fewer steps. This property
checking is then performed by a SAT or SMT solver. BMC is
widely used in the hardware industry.

For software, the application of BMC for ANSI-C is embodied in
the CBMC tool [12]. In CBMC, a C program containing assertions
is encoded into a formula [13] (in Static Single Assignment form),
which is then fed to a SAT solver or an SMT solver to check its
satisfiability. A satisfying assignment indicates that an error was
found. The formula is in conjunctive normal form.

BMC has not been explored so far for many other languages, in-
cluding Java. However, explicit-state model checking tools such
as Java PathFinder (JPF) [2] have been very effective for the ver-
ification of many Java applications. Furthermore, there has been

an explosion of symbolic execution [22] tools that have been used
successfully for many languages [14, 15, 29, 10]. In particular,
relevant to our approach, Symbolic PathFinder (SPF) [27] a sym-
bolic execution tool built as an extension of JPF, that provides a
symbolic analysis for Java programs.

In this paper, based on our previous work [26], we propose a new
methodology for BMC which is based on “classical” symbolic exe-
cution (SE) in the sense of King [22]. The way CBMC transforms
a program into Static Single Assignment form can also be viewed
as executing the program symbolically. However, this encoding
is different from the Symbolic Execution of King and we eval-
uate the two encodings as part of the work reported here. Our
methodology is not language specific and only relies on a symbolic
executor for that language and an SMT solver.

By using SE we obtain a translation of a program and assertions
into a disjunctive formula encoding the path conditions for each
bounded (complete) path explored in the code. This suggests a
simple concurrent verification strategy that relies on the obser-
vations that any subset of disjuncts can be separately checked
for satisfiability and whenever a subset is found to be satisfiable
the satisfiability task can be stopped. Hence the verification of
disjunctive formulas is naturally parallelizable.

We have implemented this methodology in a tool JCBMC, a Java
Concurrent Bounded Model Checker, which uses SPF to gener-
ate the disjunctive formula from the code (constraint solving is
turned off in SPF itself) and while generating the formula it sends
sub-formulas to multiple worker threads for satisfiability checking.
JCBMC handles programs with multi-threading and recursive in-
put data structures and relies on a standard SMT solver, namely
Z3 [3], for solving the constraints. Other solvers can be incorpo-
rated and different solvers can be used for solving different path
constraints in parallel. Although JCBMC is only a prototype, its
performance, compared with existing tools, i.e. SPF and CBMC,
is remarkable. We summarize our contributions as follows:

• A methodology for concurrent bounded model checking that
is based on “classical” SE and it is naturally parallelizable.

• The methodology is language independent and supports assume-
guarantee reasoning.

• A tool JCBMC, a concurrent bounded model checker for
Java.

• Experiments to show effectiveness of the tool for verification
of programs with multi-threading and data structures.

• Comparisons with bounded model checking and “classical”
SE, as embodied by CBMC and SPF respectively.



2. BACKGROUND
A program P is modelled as a transition system:

P = (S, I, F, T )

where S is the set of program states; I ⊆ S is the set of initial
states; F ⊆ S is the set of final states; and T ⊆ S × S is the
transition relation. Under this setting, a trace of (a concrete)
execution of the program P is represented by a sequence of states:

ρ = s0s1..sk

such that s0 ∈ I, sk ∈ F and 〈si, si+1〉 ∈ T for all i ∈ {0, .., k−1}.

2.1 Bounded Model Checking and CBMC
A trace can be also seen in logical form: the set I and the relation
T can be written as their characteristic functions: s0 ∈ I iff I(s0)
holds; 〈si, si+1〉 ∈ T iff T (si, si+1) holds. In this way, a trace ρ is
represented by the formula:

I(s0) ∧
k−1∧
i=0

T (si, si+1)

Clearly the transition system P is a model for such a formula, i.e.
P is a model for all formulas representing traces of the program.
The aim of BMC is to find bugs or prove their absence up to
some bounded k number of transitions. That means it explores
all traces ρ = s0s1..sk of the program P, in which sk needs not
to be in F. Notice that because of the bound k there are only
a finite number of traces to explore hence we can represent the
bounded program as a formula C which is a conjunction of formu-
las, whose conjoints are possible traces. Notice formulas can also
represent symbolic traces, for example if in a formula the value
of a program variable is left unspecified then there can be several
concrete traces satisfying that formula. Formulas satisfied by set
of concrete traces can be referred to as symbolic traces.

CBMC translates a C program into a logical formula C which
is then used as a model for the property P to be verified. The
property is verified by the C program iff C ∧ P is valid. This
can be checked by a satisfiability solver on C ∧ ¬P. In fact if
C ∧ ¬P is true in the model then one trace will satisfy ¬P hence
the property is not valid. On the other hand if C ∧ ¬P is false in
the model then no trace will satisfy ¬P hence P is valid.

2.2 Symbolic PathFinder: Symbolic Execution for
Java Bytecode

Symbolic PathFinder (SPF) is a symbolic execution framework
built on top of the Java PathFinder (JPF) model checking tool-
set for Java bytecode analysis. SPF implements a Bytecode in-
terpreter that replaces the standard, concrete execution seman-
tics of bytecodes with a non-standard symbolic execution. Non-
deterministic choices in branching conditions are handled by means
of JPF’s choice generators. Each non-deterministic choice has as-
sociated a path condition. JPF’s listeners are used to monitor
and influence the symbolic execution and to collect and print its
results. Symbolic execution of looping programs may result in an
infinite symbolic execution tree; for this reason, SPF is run with
a user-specified bound on the search depth. By default, whenever
the path condition is updated, SPF invokes an off-the-shelf solver
to check its satisfiability; if the path condition is found to be un-
satisfiable, SPF backtracks. As a result, by default, SPF explores
only feasible paths. Note that SPF also has an option to run
with no solving (that we use in our work here); as a result of this
option, SPF will explore all the possible paths (feasible and infea-
sible) through the program, up to the given bound. SPF uses lazy
initialization [20] to handle dynamic input data structures (e.g.,

lists and trees). Multi-threading is handled systematically using
the search mechanisms in JPF core.

3. CONCURRENT BOUNDED MODEL
CHECKING

Our method for concurrent bounded model checking is illustrated
in Fig. 1. The inputs are: a program under test, a property to
verify and three parameters – B is the search bound, N is the
number of workers and D is the number of disjuncts to give each
worker. The goal is to check if the property holds in the program,
up to bound B.

Solver 

Worker thread 

Main thread 

Solver 

Worker thread 

Solver 

Worker thread 

Controller 

Stop 

Symbolic Execution 

(constraint solving off) 

A disjunction of D 

path conditions Program 

B, D, N 

Figure 1: Concurrent BMC architecture

The program under test is analysed using the“classical”(bounded)
SE procedure with constraint solving turned off. This means
whenever a path condition is updated, we do not check its sat-
isfiability, but rather continue the exploration. As a result, SE
may explore infeasible paths, which will be checked later using
constraint solving. Our approach can be used for the bounded
verification of safety properties, which we assume have been re-
duced to checking assertions embedded in the code. Furthermore,
our method supports both assume and assert statements to en-
able assume-guarantee style verification. The assumed conditions
are simply added to the path conditions during the symbolic ex-
ecution.

The result of SE is a disjunction of path conditions, encoding con-
straints on the inputs to follow those paths, up to the pre-specified
search bound. Among these paths, only the ones that may lead to
assert violations are selected for solving. This is achieved by the
Controller which collects sets of D violating path conditions and
sends them for solving to parallel worker threads, using off-the-
shelf solvers. The workers start solving as soon as they receive
the disjunctive formulas, which may happen while the symbolic
execution is still exploring the program. The verification termi-
nates as soon as one of the threads finds a satisfying assignment,
in which case an error is reported, or when all the disjunctions
are found to be un-satisfiable, in which case the assertion holds
(no error) up to the given bound. Note that if the symbolic ex-
ecutor discovers no potentially violating paths (i.e. the error is
unreachable), then no solving will be performed.

In general, we use SE to explore all possible symbolic paths up
to a certain length, and then encode the program together with
the property to check into a formula of the form:

∨M
i=0 pci where

M is the number of paths that may trigger the error. This form
allows us to divide the formula into blocks of D disjunctions:

D−1∨
i=0

pci ∨
2D−1∨
i=D

pci · · · ∨
kD−1∨

i=(k−1)D

pci ∨
M∨

i=kD

pci



In this way, we can solve the formula concurrently using several
threads, each one solving a single block. A model of a single block
is also a model of the formula, therefore the procedure stops when
any of the threads find out a model. In JCBMC, after the main
thread generates a sub-formula and passes it to a worker thread,
it moves on to generate the next sub-formula, while the worker
thread solves the given sub-formula concurrently.

3.1 Comparing our approach with Bounded Model
Checking and Symbolic Execution

Compared with classical BMC we use an explicit enumeration of
paths, while BMC uses an implicit enumeration of paths. Al-
though at first glance the implicit encoding should be better our
experiments, even with sequential JCBMC, show that this is not
the case. Furthermore, the explicit enumeration is easily par-
allelizable, with simple and natural load balancing for different
threads. Crucially our approach stops as soon as a path leading
to an error is found to be satisfiable, while with classical BMC,
all the program needs to be explored.

Compared with classical symbolic execution: we solve only in the
end. So obviously the price to be paid is the exploration of infeasi-
ble paths. On the other hand, again, it is naturally parallelizable
and constraint solving, which is one of the bottlenecks in SE, can
be done in parallel, even with different solvers, with little coordi-
nation, if any, needed.

SPF is used to extract all possible symbolic paths up to a given
conditional branching depth. The proposed method outperforms
SPF (with solving), even in the sequential version (probably even
with one worker). One reason could be that most programs do
not contain unreachable symbolic paths, therefore ”lazy” checking
of complete symbolic paths is more efficient than checking pre-
fixes after each branching. This hypothesis could be validated by
applying SPF such a lazy way or using incremental SMT solving.

The proposed method does not check each single symbolic path
separately but it checks sets of paths. This way it makes use of the
clause learning mechanism of SMT solving, in contrast to SPF. It
would be also interesting to consider the exchange of certain learnt
clauses between the workers to further speed up the satisfiability
checks.

The proposed method outperforms classical BMC because it uses
substitution instead of introducing sets of variables for each (rel-
evant) program location. It would be interesting to see whether
a classical BMC formulation checked by an SMT solver whose
theory solver applies substitution as pre-processing would yield
similar results.

4. EVALUATION
Our evaluation comprises cases studies to compare JCBMC with
SPF (v6, default configuration) and case studies to compare JCBMC
with CBMC1. To compare with CBMC we have considered C code
whose Java translation is almost literal. By JSBMC we denote
the sequential implementation of JCBMC where a single worker
is used. Experiments are run on a machine equipped with dual
Xeon(R) E5-2670 CPUs. The results are shown in Tables 2 and
3. Unless otherwise specified times are in seconds, xmy means x

1To compare both tools with the same solver in the experiments
CBMC will be called with option –smt2, and we will use Z3 for
satisfiability checks. Note also that CBMC has an option -z3
to use Z3 in SMT1 format. However, in our case studies, using
CBMC with this option is much slower than using with SMT2 as
in our experiments.

minutes and y seconds, “timed out” is one hour and x denotes a
memory hit2. The source code of JCBMC and the examples can
be found at: https://github.com/qsphan/jpf-bmc

4.1 Comparing with CBMC and SPF
We evaluate our tool against CBMC and SPF in two classical
programs that can be written in both C and Java.

4.1.1 Bubble Sort
We consider the classical bubble sort algorithm, which has already
been studied in the BMC community [1, 5]. Here, differently from
[5], we consider the more challenging symbolic version where the
values of the array are non-deterministically chosen. We consider
both the verification of the assertion“the elements of the array are
ordered after bubble sort” and its negation “the elements of the
array are not ordered after bubble sort”. We analyse a program
implementing bubble sort. It will hence contain no bugs for the
positive assertion and will be buggy for the negation. Results
are shown in Fig 2. We notice that while CBMC is better for
the positive assertion, JCBMC outperforms the other tools for
the negative assertion and is capable of find a counterexample for
array sizes of a higher order of magnitude.

4.1.2 Sum of array
We consider the array case studies from the Software Verification
competition 2014 [1], in particular sum array safe.c for verifica-
tion and sum array unsafe.c for refutation. The array size is set
to 1000. Results show both SPF and JCBMC outperform CBMC
for the unsafe version, while CBMC has a slight advantage for the
safe version.

4.2 Comparing with SPF (Java code)
The following examples consist of substantial Java code which
is not naturally translatable in C; we hence compare JCBMC
only with SPF. Notice JCBMC and SPF are both extensions of
JPF: in the case all inputs are concrete they both reduce to JPF-
core hence their performance is identical. Hence we only consider
programs with symbolic inputs.

4.2.1 Flap controller
This case study is shipped with the distribution of SPF. It is a
multi-threaded program modelling a simplified flap controller on
an aircraft. It contains 3 classes, and 80 lines of code.

4.2.2 Red Black Tree
This is another example from the SPF distributions (3474 LOC in
one class). We check for consistency of the tree after performing
put, remove, get and firstKey symbolically.

4.2.3 MER Arbiter
The MER Arbiter models a component of the flight software for
NASA JPL’s Mars Exploration Rovers (MER) [6]. The MER Ar-
biter has been modelled in Simulink/Stateflow and it was auto-
matically translated into Java using the Polyglot framework and
analyzed with SPF. The configuration for our analysis involved
two users and five resources. The example has 268 classes, 553
methods, 4697 lines of code (including the Java Polyglot execu-
tion framework) but only approx. 50 classes are relevant. We
analyse the code with and without the error (see [6]).

2A memory hit is a “run out of memory” problem. This can be
addressed by a different memory manager in JPF.

https://github.com/qsphan/jpf-bmc


SPF JSBMC CBMC JCBMC (D = 10) JCBMC (D = 200)
Array size Bubble sort with assertion negated

6 5.622 12.604 0.817 1.160 1.389
30 4m32.790 x timed out 1.387 2.905
100 timed out x timed out 4.944 34.697

Verification of bubble sort
5 6m19.222 3.712 7.171 4.193 3.622
6 timed out 26.293 37.816 29.512 21.834
7 x x 5m22.641 x x
8 x x timed out x x

Sum of array
unsafe 1.403 12.671 1m5.738 1.576 2.479
safe failed 12.030 2.252 9.466 10.614

Figure 2: Performance of all tools. “failed” refers to SPF failing to solve the constraints using the integrated solver.

Tool SPF JSBMC JCBMC (D = 10) JCBMC (D = 200)
Flap controller (unsafe) 1.141 2.899 0.948 1.370
Red-black tree (safe) 53.602 3.942 3.267 2.774
MER Arbiter (unsafe) 5.275 8.111 7.479 7.579
MER Arbiter (safe) 47.065 59.145 57.740 58.886

Figure 3: Performance on Flap controller, Red-black tree and MER Arbiter

4.2.4 Discussion
Compared to CBMC, JCBMC scores better in finding counterex-
amples than in verifying their absence; this is consistent with its
design because a counterexample corresponds to a worker thread
finding a model of the formula. Compared with SPF, JCBMC
can be much better (see bubble sort or red black tree) but can
also be comparable or slightly worse (see MER Arbiter and Flap
Controller results). The reason for the latter is that the cost
of generating path conditions dominates the cost of solving them.
Similarly, SPF failed to generate formulas for bubble sort for sizes
7 and higher. Furthermore, an error path (e.g. in MER) may oc-
cur at the beginning of the SE exploration, and it is therefore
discovered quickly by SPF, while JCBMC still needs to generate
the pre-specified number D of error paths before solving them.
The results suggest one direction for future work, namely to in-
vestigate improving the cost of SE-based path generation.

5. RELATED WORK
Related approaches on parallelising BMC [4, 34] address parallel
solving of the conjunctive formula that is built for BMC and aim
at performing solving at different bounds, where some clauses are
shared to enable more efficient SAT solving. In contrast we aim to
solve the formulas generated with SE for the same bound, which
are naturally disjoint resulting in a simpler parallel algorithm.
Furthermore our work aims at verifying programs written in high-
level languages such as Java and it is not clear how the previous
work, performed in the context of finite state automata, would
be applicable. Also related is the work on parallel SAT and SMT
solving [31, 28, 35], which can be seen complementing our work;
we can use, for example, the parallel version of Z3 [35] in each of
the workers to further speed up our proposed approach.

PKIND [19] is a parallel model checker for Lustre that uses k-
induction. PKIND runs in parallel the different tasks involved in
performing the induction: the base step, the induction step and
also the generation of auxiliary invariants used for verification.
Thus it performs the parallel work at a higher level of granularity
than JCBMC. It would be interesting to investigate if we can
replace the parallel tasks in PKIND with our own version of SE-
based bounded verification, which in turn is parallelized at the

level of granularity of symbolic paths. Parallel model checking
has been investigated in the context of explicit-state [7, 25, 9, 17,
33, 18] and symbolic [24, 23] exploration. The latter were done
in the context of Binary Decision Diagrams, and hence are very
different from ours. These approaches concentrate on partitioning
the state space to be explored in parallel and on dealing with the
communication overhead between parallel workers. In contrast,
in our approach the workers perform the solving independently,
with no communication between them.

Previous work on parallel symbolic execution include [32, 21, 11,
30, 16]. All these approaches were done in the context of “classi-
cal” or dynamic symbolic execution, using constraint solving dur-
ing path generation. In contrast the approach we advocate here
has a clear separation between path generation and constraint
solving, allowing us to easily achieve load balancing between work-
ers, with little communication overhead.

6. CONCLUSION AND FUTURE WORK
We have presented a language independent methodology for con-
current BMC. Based on this methodology we have implemented a
concurrent bounded model checker for Java. Future work includes
to upgrade its concurrency from single CPU multi-threading to
true parallelism and to perform obvious optimisations like replac-
ing SPF with a lighter weight tool, or a parallel version, to reduce
the cost of generating path conditions. It will also be interesting
to implement the methodology for other languages (C, Python)
and investigate how to use SE for IC3 style verification.
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[4] Erika Ábrahám, Tobias Schubert, Bernd Becker, Martin
Fränzle, and Christian Herde. Parallel sat solving in
bounded model checking. FMICS’06/PDMC’06, pages
301–315.

[5] Alessandro Armando, Jacopo Mantovani, and Lorenzo
Platania. Bounded model checking of software using smt
solvers instead of sat solvers. STTT, 11(1):69–83, January
2009.

[6] Daniel Balasubramanian, Corina S. Păsăreanu, Gábor
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