
Symbolic Execution and Recent Applications to

Worst-Case Execution, Load Testing and Security

Analysis

Corina S. Păsăreanu, Rody Kersten, Kasper Luckow, Quoc-Sang Phan

Abstract

Symbolic execution is a systematic program analysis technique which
executes programs on symbolic inputs, representing multiple concrete in-
puts, and represents the program behavior using mathematical constraints
over the symbolic inputs. Solving the constraints with off-the-shelf solvers
yields inputs that exercise different program paths. Typical applications
of the technique include test input generation and error detection. In this
chapter we review symbolic execution and associated tools, and describe
some of the main challenges in applying symbolic execution in practice:
handling of programs with complex inputs, coping with path explosion
and ameliorating the cost of constraint solving. We also survey promising
applications of the technique that go beyond checking functional prop-
erties of programs. These include finding worst-case execution time in
programs, load testing and security analysis, via combinations of sym-
bolic execution with fuzzing.

1 Introduction

As computer systems become more pervasive and complex, it has become in-
creasingly important to develop techniques and tools that effectively ensure
software dependability. Symbolic execution [57] is a systematic program analy-
sis technique which explores multiple program behaviors at once, by collecting
and solving symbolic path conditions collected over program paths. Symbolic
execution can be used for finding bugs in software, where it checks for runtime
errors or assertion violations during execution and it generates test inputs that
trigger those errors.

Nowadays there are many symbolic execution tools available [22, 78, 28, 43,
24, 89] which have found numerous vulnerabilities and other interesting bugs
in software. Much of the success of symbolic execution in recent years is due
to significant advances in constraint solving and decision procedures [33, 6]
as well as to the availability of increasingly cheap computational power and
cloud computing platforms [43, 28], allowing to scale the technique to large
applications.

1



In this chapter we review symbolic execution and associated tools, and we de-
scribe the main challenges in applying symbolic execution in practice: handling
of programs with complex inputs, coping with path explosion and ameliorating
the cost of constraint solving. We also survey some applications of the technique
that go beyond checking functional properties of programs. These include find-
ing worst-case execution time in programs, load testing and security analysis,
via combinations of symbolic execution with fuzzing. These applications are
perhaps less studied in the literature but we believe they hold much promise for
the future. We conclude with directions for future work.

2 Symbolic Execution

Symbolic execution [57] is a program analysis technique that executes a pro-
gram on symbolic, instead of concrete, input values and computes the effects
of the program as functions in terms of these symbolic inputs. The result of
symbolically executing a program is a set of symbolic paths, each with a path
condition PC, which is a conjunction of constraints over the symbolic inputs
that characterizes all the inputs that follow that path. All the PCs are disjoint.

When executing a branching instruction with condition c, symbolic execution
systematically explores both branches and updates the path condition accord-
ingly: PC ← PC∧c for the then branch and PC ← PC∧¬c for the else branch.
The feasibility of the path conditions is checked using off-the-shelf constraint
solvers such as Z3 [33]. If a path condition is found to be unsatisfiable, symbolic
execution stops analyzing that path (since that path is not feasible). For the
feasible paths, the models returned by the constraint solver can be used as test
inputs that execute these paths. To deal with loops and recursion, typically a
bound is put on the exploration depth.

Several tools implement “classic” symbolic execution which is essentially
a static analysis technique, as it analyzes a program without running it; in
Symbolic PathFinder, the program is actually “run”, but this is done inside
the custom JVM of the Java pathFinder tool. Dynamic symbolic execution
techniques, on the other hand, collect symbolic constraints at run time during
concrete executions. Examples of such dynamic techniques are implemented in
DART (Directed Automated Random Testing) [42] and Klee [22].

Dynamic test generation as first proposed by Korel [60], consists of running
the program starting with some random inputs, gathering the symbolic con-
straints on inputs at conditional statements, using a constraint solver to gener-
ate new test inputs and repeating the process until a specific program path or
statement is reached. DART performs a similar dynamic test generation, where
the process is repeated to attempt to cover all feasible program paths, and it
detects crashes, assert violations, runtime errors etc. during execution.

2



2.1 Complex heap data structures

Invented in the 70s, traditional symbolic execution has been proposed for pro-
grams with a fixed number of numerical inputs. However, modern programming
languages such as C++ and Java contain a variety of data structures, e.g. linked
lists or trees, that might dynamically allocate objects at run time. A naive ap-
proach to this problem is to impose a priori bounds on the inputs. For example,
for a program that takes a linked list as input, one needs to initialize it with k
list nodes, and each one can be symbolic. However, k have to be defined be-
forehand. A pessimistically large k leads to path explosion problem, and small
k (incorrectly) reduces the search space of symbolic execution. Moreover, it is
not straightforward to describe the bounds for data structures such as tree.

To address the problem above, Khurshid et al. [55] introduced the lazy ini-
tialization algorithm, which has become the state-of-the-art way of handling
heap data structures. This algorithm works as follows.

1. When a symbolic input is of reference type, i.e. linked list, execute the
program without initializing it.

2. When an uninitialized symbolic variable is de-referenced, exhaustively
enumerate all possible concrete objects that it can reference to (i) null;
(ii) new object; (iii) previously initialized objects of the same type (i.e.
it is an alias)

In the second step, symbolic execution case splits on each of possible choices,
which leads to rapid path explosion. Therefore, there have been multiple efforts
on improving the enumeration of this step.

Deng et al. proposed the lazier algorithm [34], which delays case splitting in
lazy initialization by grouping together choices in (ii) and (iii) (non-null choices),
into a symbolic variable. Case splitting on non-null variables occurs later when
they are accessed. The same authors then introduced a more enhanced algo-
rithm, called lazy# [35], with group together all choices in (i), (ii) and (iii) in
the same manner.

Symbolic initialization [47] uses a guarded value set to capture all choices
in (i), (ii) and (iii) in the same symbolic heap. This completely avoids case
splitting in symbolic paths when initializing a symbolic variable of reference
type. This, however, comes with the cost of solving constraints with greater
complexity, since case splitting is actually delegated to the SMT solver.

Geldenhuys et al. [40] took a different approach, instead of delaying case
splitting, the authors aim to reduce the number of choices in (iii) by consider-
ing only non-isomorphic structures. This is done via pre-computed tight field
bounds. Computing those bounds is very expensive, but the authors argue that
they can be re-used to test different methods in the program.

The lazy initialization-based approaches have been adapted to take into ac-
count the shape of the input. For example, when the input is designed to be
singly linked list, the choices in (iii) should be restricted to avoid configurations
of a circular linked list and so on. To address this problem preconditions are

3



used in e.g. [55, 92] to constraint heap inputs. This is implemented as using
an API, verify.ignoreIf, to tell symbolic execution to stop exploring when a
method pre() representing preconditions returns false. This approach delegates
testing preconditions to the users. For example, to impose the constraint that
the input is a binary tree, such a method pre() needs to implement a depth-first
search to detect cycles.

Braione et al. [16] introduced Heap EXploration Logic (HEX) as a specifica-
tion language for lazy initialization. When symbolic execution enumerates the
choices in (i), (ii) and (iii), the HEX verifier checks those choices against a spec-
ification, written in HEX, and prune off invalid states. HEX lacks numerical
operators, and thus it cannot express numerical properties of the data structures
such as the size of a linked list. The HEX language is not expressive enough to
describe shapes of data structures either. Users have to provide methods, called
triggers, to check properties that cannot be checked by HEX.

Pham et al. [71] use separation logic [48, 80] with inductive definitions to
describe the symbolic heap and the shape of the input data structures. When an
uninitialized symbolic variable is de-referenced and if it is defined by an inductive
predicate, they unfold it to capture the footprints, i.e. the resources it accesses.
This unfolding process updates the heap configuration, and a SAT solver for
separation logic [62] is then used to check if the updated heap configuration is
satisfiable.

3 Tools and Scalability Challenges

Because of its capability of finding subtle bugs, and its applications in a widespread
of domains, symbolic execution has been developed on several platforms, for
different programming languages. The following table contains a (likely incom-
plete) list of symbolic executors.

4



Language Tool Link

Java (bytecode)

Symbolic PathFinder [78] https://babelfish.arc.nasa.gov/trac/jpf/wiki/projects/jpf-symbc

Java StarFinder [71] https://github.com/star-finder/jpf-star

jCUTE https://github.com/osl/jcute

janala2 https://github.com/ksen007/janala2

jDART [65] https://github.com/psycopaths/jdart

JBSE [17] https://github.com/pietrobraione/jbse

KeY http://www.key-project.org/

X86(-64) binaries

Project Springfield https://www.microsoft.com/en-us/springfield/

SAGE [43] —
Mayhem [24] http://forallsecure.com/mayhem.html

Miasm (many different binaries) https://github.com/cea-sec/miasm

BAP (Also ARM) [20] https://github.com/BinaryAnalysisPlatform/bap/

S2E (Also ARM) [27] http://s2e.epfl.ch

Angr http://angr.io/

Pathgrind https://github.com/codelion/pathgrind

pysymemu https://github.com/feliam/pysymemu/

Triton http://triton.quarkslab.com

C / C++
CUTE [82] —
CREST http://www.burn.im/crest/

DART [42] —
KLOVER [63] —
EXE [23] —
Otter https://bitbucket.org/khooyp/otter/overview

LLVM
KLEE [22] http://klee.github.io/

Cloud9 http://cloud9.epfl.ch/

Kite http://www.cs.ubc.ca/labs/isd/Projects/Kite/

.NET Pex http://research.microsoft.com/en-us/projects/pex/

JavaScript
SymJS http://www.cs.utah.edu/~ligd/publications/SymJS-FSE14.pdf

Jalangi2 https://github.com/Samsung/jalangi2

Kudzu [81] —

Dalvik bytecode SymDroid [50] —

Python PyExZ3 [8] https://github.com/thomasjball/PyExZ3

VineIL
BitBlaze [85] http://bitblaze.cs.berkeley.edu

FuzzBALL [7] http://bitblaze.cs.berkeley.edu/fuzzball.html

Boogie Symbooglix [64] https://github.com/symbooglix/symbooglix

CIVL language CIVL http://vsl.cis.udel.edu/civl/

Ruby Rubyx http://www.cs.umd.edu/~avik/papers/ssarorwa.pdf

3.1 Challenges

There are two main challenges in scaling up symbolic execution: there are too
many paths to explore and the path conditions are too difficult to solve. Ad-
dressing these two challenges are active areas of research.

Path explosion. Recall that symbolic execution explores symbolic paths of
the program, which form a (symbolic execution) tree. Each path of the tree is
independent of the others, thus there have been multiple efforts on parallelizing
symbolic execution [56, 84, 87, 28, 46], and distributing the exploration process
to multiple workers. This idea is very promising thanks to recent advances
in cloud services, however balanced distribution of workload among workers
remains a big challenge, as the depth and breadth of the symbolic execution
tree are not known in advance.

Other approaches to the path explosion problem reducing the number of
paths using state or path merging and also compositional techniques [41, 3, 61, 5,
83, 79]. Some of these approaches use disjunction or set to represent (symbolic)
values of the resultant merged states. Thus the reduction of the number of path
comes with the cost of solving constraints with greater complexity. Related
techniques use different forms of abstraction to reduce the number of paths in
looping programs [49, 44].

Other techniques use sampling or different search heuristics [38] to try to
hit the bug faster using sampling. The idea is that most symbolic execution
engine employs depth-first search, which systematically searches the symbolic

5

https://babelfish.arc.nasa.gov/trac/jpf/wiki/projects/jpf-symbc
https://github.com/star-finder/jpf-star
https://github.com/osl/jcute
https://github.com/ksen007/janala2
https://github.com/psycopaths/jdart
https://github.com/pietrobraione/jbse
http://www.key-project.org/
https://www.microsoft.com/en-us/springfield/
http://forallsecure.com/mayhem.html
https://github.com/cea-sec/miasm
https://github.com/BinaryAnalysisPlatform/bap/
http://s2e.epfl.ch
http://angr.io/
https://github.com/codelion/pathgrind
https://github.com/feliam/pysymemu/
http://triton.quarkslab.com
http://www.burn.im/crest/
https://bitbucket.org/khooyp/otter/overview
http://klee.github.io/
http://cloud9.epfl.ch/
http://www.cs.ubc.ca/labs/isd/Projects/Kite/
http://research.microsoft.com/en-us/projects/pex/
http://www.cs.utah.edu/~ligd/publications/SymJS-FSE14.pdf
https://github.com/Samsung/jalangi2
https://github.com/thomasjball/PyExZ3
http://bitblaze.cs.berkeley.edu
http://bitblaze.cs.berkeley.edu/fuzzball.html
https://github.com/symbooglix/symbooglix
http://vsl.cis.udel.edu/civl/
http://www.cs.umd.edu/~avik/papers/ssarorwa.pdf


execution tree from one side to the other. When the execution tree is too big
for exhaustive search, depth-first search may always get stuck in the beginning
parts of the tree, and thus sampling can increase the chances of hitting the bugs.

Improving constraint solving. As constraint solving is expensive, an intu-
itive idea is to cache the result, and look up the cache before invoking the solver.
KLEE [22] exploits the fact that when a program has independent branches, the
path condition will be comprised of independent constraints. Therefore, decom-
posing the constraints into multiple independent subsets, and caching results
for those subsets increases the possibility of cache hit.

Green [91] took one step further, normalizing the constraints and then saving
them, together with their results, offline to a database. In this way, constraint
solving can be reused across programs, analyses and solvers. Green was imple-
mented for linear integer constraints, while Cashew [18], built on top of Green,
extends the Green approach to string constraints.

In a different context, since symbolic execution often has to be run several
times on the same program, e.g. first to check the error, then to verify the
program after fixing the error, memoized symbolic execution [93] uses a trie
to store the whole symbolic execution tree in the first run, then re-uses the
summaries from the trie in the following runs.

Another active research area is to extend symbolic execution to programs
with complex constraints, such as non-linear numerical constraints [86] or com-
bination of string constraints and numeric constraints [96, 10].

4 Applications

4.1 Worst-Case Execution Time (WCET) Analysis

Symbolic execution has been used in several works related to real-time systems.
Real-time systems are characterized by having timing requirements in addition
to functional requirements. As an example, systems operating in the safety-
critical domain often have hard temporal requirements on responding to stimuli
from the environment, such as an airbag that must be deployed within a specific
timeframe upon collision.

An important aspect of of real-time systems is the Worst Case Execution
Time (WCET) of the (real-time) tasks constituting the system. In hard real-
time systems (i.e. systems where deadline violations can not be tolerated), it is
often insufficient to rely on measuring execution times of the tasks with various
inputs. Symbolic execution has been extensively used in the context of WCET
analysis [12, 51, 68, 88, 58, 67, 52, 14, 13].

Generally, symbolic execution is used in the field of WCET analysis as the
high-level analysis that restricts focus to obtaining information about feasibility
of program paths. This information is subsequently used in combination with a
low-level analysis that gathers platform specific information, including behavior
of processor-specific features such as caching, pipelines etc. In this combination,

6



only the feasible paths as determined by symbolic execution are used, allowing
higher precision of the analysis result.

An early work that takes this approach is that of [25] that performs timing
analysis of SPARK Ada code. The work by [68] uses a similar approach by
using cycle-level symbolic execution to integrate path and timing analysis for
obtaining tight WCET estimates. Using this technique, the authors were able
to perform a perfect WCET estimation for six out of seven test subjects. They
also showed that this combination can improve WCET estimation by a factor
of twenty when comparing it with a more conservative method that does not
prune infeasible paths, but only relies on the structure of the program.

The work of [88] uses symbolic execution to prune infeasible paths in straight-
line code (i.e., no loops or recursion)—a commonly found approach to embedded
systems development. Imposing such restrictions on the control-flow, guarantees
termination for symbolic execution. As with the previous work, the motivation
for symbolic execution is to check for feasibility of paths.

The WCET analysis tool, r-TuBound, uses selective symbolic execution [13].
It uses a selective approach to avoid the high computational costs of exhaustive
analysis. The symbolic execution is only invoked when the information obtained
is limited and when other analysis techniques incorporated in r-TuBound fail.

The work of [67] presents an approach for modeling the real-time tasks of a
real-time system written in a variant of the Safety-Critical Java profile. The tool
extracts the real-time (periodic and sporadic) tasks and symbolically executes
them using Symbolic PathFinder [78]. The paths obtained, are translated into a
Network of Timed Automata—the modeling formalism of the UPPAAL model
checker—and combined with models of the scheduler. The complete NTA can
be used for reasoning about temporal properties that can be expressed in the
Timed Computation Tree Logic variant that UPPAAL supports. This includes
the schedulability of the tasks, i.e. under all different task schedules (taking into
account task interactions and sporadically firing tasks), will the system never
violate a task deadline? In addition, the tool also supports querying WCETs as
well as Best Case Execution Times (BCETs) and response times of the tasks.

4.2 Performance Testing

Symbolic execution effectively enumerates all paths through a program, up to a
user-specified bound. It can therefore be used to find performance bottlenecks,
e.g. paths that exhibit a large cost with respect to time, memory, power or
energy consumption, and so on. By finding a solution for the corresponding
path condition, an actual input that triggers this behavior can be generated.

Load testing In load testing, a system is analyzed with its behavior under
peak loads. Typically, one increases the size of the test input to increase the
load on the system. In many cases, however, it is possible to increase the load
by carefully choosing input values rather than by increasing the input size.
Moreover, when simply increasing the input size, certain program behaviors

7



may remain undetected. Larger but similarly shaped input may execute the
same behavior more often, yet miss other potentially costly behaviors.

Directed incremental symbolic execution is applied by Zhang, Elbaum and
Dwyer to automatically generate load tests in [95]. Their approach is directed
by a cost model, in the sense that it favors more costly paths. It is incremental
in that it works in phases. It is implemented in a modified version of Symbolic
PathFinder.

The user specifies two parameters: the number of test cases to generate and
the depth of each phase of symbolic execution. Each phase starts with exhaus-
tive exploration up to the user-specified depth, either from program entry or
from a set of locations resulting from the previous phase. Next, the most costly
paths are scheduled for further exploration. The number of paths that will be
explored further is exactly the number of requested test cases. To increase diver-
sity among paths selected for further exploration, paths are first clustered and
in case these do not satisfy a diversity measure, further exhaustive exploration
of all paths is performed.

Evaluation shows that load tests generated with directed incremental sym-
bolic execution can incite bigger loads, often at smaller input sizes, than human
written or randomly generated tests. The approach is also shown to scale up to
input sizes of 100MB.

Finding performance bugs In [21], Burnim, Juvekar and Sen apply sym-
bolic execution to find what they call performance bugs. Such a bug is said to
exist when the complexity of the implementation does not match the theoretical
complexity of the implemented algorithm. Their algorithm is called WISE. It
uses a clever trick to increase scalability of the analysis, based on the obser-
vation that worst-case program behaviors at small input sizes are often good
indicators of the worst-case program behavior at larger input sizes.

In a first step, exhaustive exploration at small input sizes is used to construct
a worst-case generator. Such a generator specifies which paths are likely to lead
to the worst case and which are not. For a conditional b in the program, if in the
paths leading to the worst case at small input, the same decision (true, false) is
always made, it is conjectured that this decision will lead to the worst-case at
greater input sizes as well. The generator can then be used at greater input sizes
to prune paths that are not likely to lead to the worst case. The paper provides
a theoretical guarantee that there is an input size N that is large enough to
capture all program behaviors and that, therefore, the generator resulting from
exhaustive exploration up to size N accurately predicts the worst-case behavior
at any input size M > N .

The WISE algorithm is extended in [66] in a tool called SPF-WCA. SPF-
WCA generates guidance policies which, similarly to worst-case generators, dic-
tate which paths to follow during symbolic execution to discover likely worst-
case behaviors. However, the policies are made more expressive by taking into
account the history of decisions for each conditional. This means that even
though both true and false are seen on the worst-case paths, the generator

8



can still make a suggestion by looking at patterns in the history of decisions.
Precision is also improved by making the policies context-aware, in the sense
that only decisions within the same calling context can affect the generator for
a conditional. Furthermore, the algorithm in [66] is extended to infer the com-
plexity at any input size, by fitting a function to the results for increasing input
sizes. Costs are obtained for input sizes 1 . . . N , then functions corresponding
to common complexity classes are fitted against the results. The application of
this work is finding performance related security bugs: if the actual complexity
of an algorithm does not match the theoretical complexity, then an adversary
can potentially deny service to benign users by sending input that triggers the
worst-case complexity. Such inputs can be found by solving the path condition
of worst-case paths.

4.3 Security Analysis

Automated Exploit Generation. Automated exploit generation as pro-
posed in [4] uses symbolic execution to find vulnerabilities and to generate
working exploits for them. The exploits can redirect control flow to execute
injected shell-code, perform a return-to-libc attack, and so on. With the goal
being discovering some particular types of exploitable bugs, symbolic execution
is used with heuristics based on domain knowledge about different types of bugs.
For example, buffer overflow can only occur when an input is copied to a buffer
with smaller size, thus the approach uses a light-weight analysis to determine the
minimum length k to overwrite any buffer in the program. Performing symbolic
execution with the precondition that the input should be at least k significantly
prunes off uninteresting input space. Moreover, buffer overflow often occurs at
the end of loops, so symbolic execution is customized to give higher priority to
the paths that fully exhaust the loop.

Non-interference testing. Undesired flows of information between different
sensitivity levels can seriously compromise the security of a system. In a security
context, a program can be viewed as a communication channel where informa-
tion is transmitted from a source H to a sink O. When H contains confidential
information and O can be observed by public users, information flow from H to
O is not desirable. Traditional information flow analysis considers source and
sink as variables of the program: H is an input with sensitive data (e.g. a user
password), and O is the program output. Absence of information flow means
the variable O is not interfered by the variable H, which can be formalized as a
non-interference policy [30, 45].

A prominent approach to checking non-interference involves self-composition [32,
11], which checks the following Hoare triple on the composition of program P:

{L = L1}P; P1{O = O1}

Here L is the public input of the program P, and P1 is a copy of P where L and O

are renamed to L1 and O1, respectively. The program P satisfies non-interference

9



if when executing the sequential composition of P and P1 with the precondition
L = L1, after the execution, the postcondition O = O1 holds.

Symbolic execution was used for checking self-composition as described in [72].
This approach assumes that the program P can be fully explored to obtain the
set of all symbolic paths, and uses path manipulation to avoid the cost of exe-
cuting the self-composed program. This work is later generalized in [36], which
releases the assumption, and handles recursions and unbounded loops using
user-defined loop invariants and method contracts.

Balliu et al.[9] took a different approach and formalized non-interference us-
ing an epistemic logic. Formulae in this logic are then checked using an algorithm
based on symbolic execution, implemented on top of Symbolic PathFinder.

Quantitative information flow analysis. Non-interference is often overly
pessimistic and in practice unachievable. To illustrate consider a password
checking program whose public output, which rejects or accepts a user-provided
input, depends on the value of the password. Such a program does not sat-
isfy non-interference and it leaks a small amount of information, i.e. if the
input matches the secret password or not. The program will eventually leak
the whole password if the adversary is given enough attempts. However, with a
strong password the amount of leaked information is too small, and the program
is considered to be secure.

To address the limitation above, quantitative methods for information flow [29,
69] have been developed, which, instead of enforcing zero interference, measure
interference. We use the two terms “interference” and “information flow” in-
terchangeably, since O is interfered by H if there is information flow from H to O.
Thus programs with “small” interference can be accepted as secure. Informa-
tion leakage is measured using information theory metrics [31] such as Shannon
entropy, Rényi’s min-entropy and channel capacity.

To compute channel capacity, i.e. maximum amount of information leakage,
symbolic quantitative information flow (SQIF) [76, 74] adds conditions to test
every bit of the output O, and uses symbolic execution to explore all possible
values of O. Using bitvector solvers, SQIF can perform quantitative information
flow analysis over programs with non-linear constraints.

Instead of using symbolic execution to enumerate values of the output O,
and thus compute channel capacity, QILURA [75] uses symbolic execution to
partition the input space, and counts (using an off-the shelf model counting
tool) the blocks in the partition that lead to leakage of information. By dele-
gating the counting process to Latte [2], a model counter for systems of linear
integer inequalities, QILURA achieves significant improvement in performance
compared to SQIF. However, by using Latte, it can only analyze programs with
linear constraints, and by counting the input, it only returns an upper bound
on channel capacity.

Side-channel analysis. Side channels allow an attacker to infer information
about a secret by observing non-functional characteristics of a program, such

10



as execution time or memory consumed. Recall that a program can be viewed
as a communication channel where information is transmitted from a source H

to a sink O. For side-channel analysis, the sink O is not necessary an output
variable but rather a non-functional characteristic of program execution, such
as running time, power consumption, number of memory accessed or packets
transmitted over a network. Side-channel attacks [59, 53, 19, 26] have been used
successfully to uncover secret information in a variety of applications, including
web applications and cryptographic systems.

In previous work [77, 10, 73], we have studied the use of symbolic execution
for side channel analysis. Different from SQIF and QILURA, in this line of
work we compute Shannon entropy of the leakage and we tackle the problem
of multi-run attacks, that is we consider scenarios when an adversary can exe-
cute the program multiple times with different and gradually uncover a secret.
Solving this problem is difficult, since quantifying leakage for a weak or random
single-runattack could not provide a guarantee for all possible attacks, and thus
we need to synthesize optimal attacks.

4.4 Symbolic Execution and Fuzzing

An idea that has been shown to be particularly promising in recent years is
the combination of symbolic execution with other testing techniques that are
less expensive, but also are limited in their ability of achieving a high coverage
of program paths. Symbolic execution is then invoked on demand, to increase
coverage.

Particularly promising is the combination of symbolic execution and fuzzing.
Fuzzing is an automated testing technique that has been used successfully to dis-
cover security vulnerabilities and other bugs in software [70, 90]. In its simplest,
black-box, form, a program is run on randomly generated or mutated inputs, in
search of cases where the program crashes or hangs. More advanced techniques
may take input formatting into account, e.g. in the form of grammars, or lever-
age program instrumentation or program analysis to gather information about
the program paths exercised by the inputs, in order to increase coverage.

Fuzzing has shown to be very effective at finding security vulnerabilities
in practice. For instance, the popular fuzzing tool AFL [94] was instrumen-
tal in finding several of the Stagefright vulnerabilities in Android, as well as
numerous bugs in (security-critical) applications and libraries such as Bash,
BIND, OpenSSL, OpenSSH, GnuTLS, GnuPG, PHP, Apache, IJG jpeg,
libjpeg-turbo and many more. The work in [54] presents Kelinci, an AFL-
based fuzzer for Java that found similar vulnerabilities in Apache Commons
Imaging and OpenJDK 9 .

Fuzzing has its limitations. As inputs are tested randomly, every input value
has the same probability of getting tested and code coverage is generally low.
Consider, for example, the code in Listing 1. This function has a bug when the
value of its input is exactly 1234. The chance of randomly testing this input is
only 1 in 232.

11



void ex(int x) {
if (x == 1234)

abort();
}

Listing 1: Function that is problematic for fuzzing

This is exactly the type of problem that symbolic execution is good at. It
will easily find and solve the constraint x = 1234 leading to new behavior. The
techniques described in this sections leverage these complementary strengths of
fuzz testing and symbolic execution.

EvoSuite In [39] Galeotti et al. observed that if there is a change in fitness
after a mutation on a primitive value, then the variable this value is assigned
to is important. Thus they use dynamic symbolic execution with this variable
being symbolic, to derive new values for it. On the other hand, if there is no
change in fitness after a mutation or the changes in fitness are not related to a
primitive value, then their adaptive algorithm does not apply dynamic symbolic
execution. This approach is embodied in the EvoSuite tool.

SAGE and Project Springfield A promising approach that combines sym-
bolic execution with fuzzing is implemented in the SAGE tool which has been
continued with Project Springfield. SAGE (Scalable Automated Guided
Execution) [43] extends DART with a directed search algorithm. Instead of
negating only the final condition of a complete symbolic execution, this gener-
ational search negates all conditions on the path (in conjunction with the path
condition for the path leading up to them). This results in a large number of
new test inputs, instead of just one. SAGE is used extensively at Microsoft and
has been very successful at finding security-related bugs. Out of all bugs discov-
ered in Windows 7, approximately one in three was found using SAGE. This
is notable, as it was the last tool applied, so none of these bugs were found by
other tools [43]. Microsoft is currently in the process of making SAGE available
to the public as a cloud service under the name Project Springfield1.

Driller Driller [89] is another promising tool that combines the AFL fuzzer
with the angr symbolic execution engine. AFL is a security-oriented grey-box
fuzzer that employs compile-time instrumentation and genetic algorithms to au-
tomatically discover test cases that trigger new internal states in C programs,
improving the functional coverage for the fuzzed code. Driller is based on
the idea that software consists of different compartments. Within a compart-
ment, decisions are fairly uniformly distributed and, as such, fuzzing works very
well. Jumps between compartments, however, may be less trivial for a fuzzer
to detect. For instance, an application may expect a certain file header that is
essentially a magic number as in Listing 1. To ensure progress, Driller invokes
the symbolic execution engine whenever the fuzzer appears to be “stuck”. It
symbolically traces the program for all inputs that AFL found “interesting”,

1https://www.microsoft.com/en-us/security-risk-detection/

12

https://www.microsoft.com/en-us/security-risk-detection/


then finds decisions that have unexplored branches and invokes a solver to gen-
erate inputs that drive execution down that branch. As this is expected to help
crossover to new program compartments, fuzzing continues from these generated
inputs. Driller was evaluated on 126 applications released in the qualifying
event of the DARPA Cyber Grand Challenge. It identified the same number of
vulnerabilities, in a similar time-frame, as the tool that performed best at the
event.

Mayhem Mayhem [24] is a symbolic execution engine that aims to find se-
curity vulnerabilities in binaries. It has a strong focus on the ubiquitous buffer
overflow, and other memory-related vulnerabilities. Mayhem augments path
constraints with additional, security-related information such as if a user can
load their own code into memory. If such an augmented path condition is
satisfiable, then the program is vulnerable. To be able to capture such security-
related properties, Mayhem uses an index-based memory model to allow using
symbolic values to point to memory locations.

It also uses a combination of dynamic symbolic execution and traditional
symbolic exection, which is referred to as hybrid symbolic execution. A Concrete
Executor Client (CEC) explores paths concretely. However, it does keep track
of which inputs are considered symbolic and performs a dynamic taint analysis.
When a basic block is reached that contains tainted instructions, it is passed to
the Symbolic Executor Server (SES) that is running in parallel. After symbolic
execution, the SES instructs the CEC on a particular path to execute. When
memory is strained, Mayhem threads can store their state to be efficiently
restarted later.

The tool has been combined with a fuzzer (Murphy) and in 2016, it won
the DARPA Cyber Grand Challenge, in which 7 autonomous computer systems
competed live in a search for security vulnerabilities2.

5 Conclusion

In this chapter we reviewed symbolic execution techniques and tools and we
described recent applications, including finding worst-case execution time in
programs, load testing and security analysis, via combinations of symbolic ex-
ecution with fuzzing. There are other promising directions for symbolic execu-
tion, among them the extension of symbolic execution to probabilistic reason-
ing [15, 37], with applications to reliability analysis and quantitative information
flow (which we described briefly in this chapter). An in-depth review of those
techniques is left for the future.

Symbolic execution is increasingly used not only in academic settings but
also in industry, e.g. in Microsoft, NASA, IBM and Fujitsu, and even at the Pen-
tagon [1]. Many symbolic execution engines have been built targeting different
programming languages and architectures. This trend is expected to intensify

2https://www.darpa.mil/news-events/2016-08-04

13

https://www.darpa.mil/news-events/2016-08-04


in the future. Symbolic execution in a distributed setting, leveraging cloud
technology, such as Cloud9 [28], SAGE [43], and MergePoint [5], is expected to
further extend the applicability of the technique in practice.

References

[1] https://www.cyberscoop.com/mayhem-darpa-cyber-grand-challenge-dod-voltron/.

[2] LattE. http://www.math.ucdavis.edu/~latte/.

[3] S. Anand, P. Godefroid, and N. Tillmann. Demand-driven Compositional
Symbolic Execution. In Proceedings of the Theory and Practice of Soft-
ware, 14th International Conference on Tools and Algorithms for the Con-
struction and Analysis of Systems, TACAS’08/ETAPS’08, pages 367–381,
Berlin, Heidelberg, 2008. Springer-Verlag.

[4] T. Avgerinos, S. K. Cha, A. Rebert, E. J. Schwartz, M. Woo, and D. Brum-
ley. Automatic Exploit Generation. Commun. ACM, 57(2):74–84, Feb.
2014.

[5] T. Avgerinos, A. Rebert, S. K. Cha, and D. Brumley. Enhancing Symbolic
Execution with Veritesting. In Proceedings of the 36th International Con-
ference on Software Engineering, ICSE 2014, pages 1083–1094, New York,
NY, USA, 2014. ACM.

[6] A. Aydin, L. Bang, and T. Bultan. Automata-Based Model Counting
for String Constraints, pages 255–272. Springer International Publishing,
Cham, 2015.

[7] D. Babić, L. Martignoni, S. McCamant, and D. Song. Statically-directed
Dynamic Automated Test Generation. In Proceedings of the 2011 Inter-
national Symposium on Software Testing and Analysis, ISSTA ’11, pages
12–22, New York, NY, USA, 2011. ACM.

[8] T. Ball and J. Daniel. Deconstructing Dynamic Symbolic Execution. Tech-
nical report, Jan. 2015.

[9] M. Balliu, M. Dam, and G. L. Guernic. ENCoVer: Symbolic Exploration for
Information Flow Security. In Proceedings of the 2012 IEEE 25th Computer
Security Foundations Symposium, CSF ’12, pages 30–44, Washington, DC,
USA, 2012. IEEE Computer Society.

[10] L. Bang, A. Aydin, Q.-S. Phan, C. S. Păsăreanu, and T. Bultan. String
Analysis for Side Channels with Segmented Oracles. In Proceedings of
the 2016 24th ACM SIGSOFT International Symposium on Foundations
of Software Engineering, FSE 2016, pages 193–204, New York, NY, USA,
Nov. 2016. ACM.

14

https://www.cyberscoop.com/mayhem-darpa-cyber-grand-challenge-dod-voltron/
http://www.math.ucdavis.edu/~latte/


[11] G. Barthe, P. R. D’Argenio, and T. Rezk. Secure Information Flow by
Self-Composition. In Proceedings of the 17th IEEE workshop on Computer
Security Foundations, CSFW ’04, Washington, DC, USA, 2004. IEEE Com-
puter Society.

[12] B. Benhamamouch, B. Monsuez, and F. Védrine. Computing WCET Using
Symbolic Execution. In Proceedings of the Second International Conference
on Verification and Evaluation of Computer and Communication Systems,
VECoS’08, pages 128–139, Swinton, UK, UK, 2008. British Computer So-
ciety.

[13] A. Biere, J. Knoop, L. Kovács, and J. Zwirchmayr. The Auspicious Couple:
Symbolic Execution and WCET Analysis. In C. Maiza, editor, 13th Inter-
national Workshop on Worst-Case Execution Time Analysis, volume 30 of
OpenAccess Series in Informatics (OASIcs), pages 53–63, Dagstuhl, Ger-
many, 2013. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

[14] R. Bod́ık, R. Gupta, and M. L. Soffa. Refining Data Flow Information
Using Infeasible Paths. SIGSOFT Softw. Eng. Notes, 22(6):361–377, Nov.
1997.

[15] M. Borges, A. Filieri, M. d’Amorim, C. S. Pasareanu, and W. Visser. Com-
positional solution space quantification for probabilistic software analysis.
In ACM SIGPLAN Conference on Programming Language Design and Im-
plementation, PLDI ’14, Edinburgh, United Kingdom - June 09 - 11, 2014,
pages 123–132, 2014.

[16] P. Braione, G. Denaro, and M. Pezzè. Symbolic Execution of Programs with
Heap Inputs. In Proceedings of the 2015 10th Joint Meeting on Foundations
of Software Engineering, ESEC/FSE 2015, pages 602–613, New York, NY,
USA, 2015. ACM.

[17] P. Braione, G. Denaro, and M. Pezzè. JBSE: A Symbolic Executor for
Java Programs with Complex Heap Inputs. In Proceedings of the 2016
24th ACM SIGSOFT International Symposium on Foundations of Software
Engineering, FSE 2016, pages 1018–1022, New York, NY, USA, 2016. ACM.

[18] T. Brennan, N. Tsiskaridze, N. Rosner, A. Aydin, and T. Bultan. Con-
straint Normalization and Parameterized Caching for Quantitative Pro-
gram Analysis. In Proceedings of the 2017 11th Joint Meeting on Founda-
tions of Software Engineering, ESEC/FSE 2017, pages 535–546, New York,
NY, USA, 2017. ACM.

[19] D. Brumley and D. Boneh. Remote Timing Attacks Are Practical. In Pro-
ceedings of the 12th Conference on USENIX Security Symposium - Volume
12, SSYM’03, pages 1–1, Berkeley, CA, USA, 2003. USENIX Association.

[20] D. Brumley, I. Jager, T. Avgerinos, and E. J. Schwartz. BAP: A Binary
Analysis Platform, pages 463–469. Springer Berlin Heidelberg, Berlin, Hei-
delberg, 2011.

15



[21] J. Burnim, S. Juvekar, and K. Sen. WISE: Automated test generation
for worst-case complexity. In 2009 IEEE 31st International Conference on
Software Engineering, pages 463–473, May 2009.

[22] C. Cadar, D. Dunbar, and D. Engler. KLEE: unassisted and automatic
generation of high-coverage tests for complex systems programs. In Pro-
ceedings of the 8th USENIX conference on Operating systems design and im-
plementation, OSDI’08, pages 209–224, Berkeley, CA, USA, 2008. USENIX
Association.

[23] C. Cadar, V. Ganesh, P. M. Pawlowski, D. L. Dill, and D. R. Engler.
EXE: Automatically Generating Inputs of Death. In Proceedings of the
13th ACM Conference on Computer and Communications Security, CCS
’06, pages 322–335, New York, NY, USA, 2006. ACM.

[24] S. K. Cha, T. Avgerinos, A. Rebert, and D. Brumley. Unleashing Mayhem
on Binary Code. In Proceedings of the 2012 IEEE Symposium on Security
and Privacy, SP ’12, pages 380–394, Washington, DC, USA, 2012. IEEE
Computer Society.

[25] R. Chapman, A. Burns, and A. Wellings. Integrated program proof and
worst-case timing analysis of SPARK Ada. In In Proc. ACM SIGPLAN
Workshop on Languages, Compilers and Tools for Real-Time Systems
(LCT-RTS’94. ACM Press, 1994.

[26] S. Chen, R. Wang, X. Wang, and K. Zhang. Side-Channel Leaks in Web
Applications: A Reality Today, a Challenge Tomorrow. In Proceedings of
the 2010 IEEE Symposium on Security and Privacy, SP ’10, pages 191–206,
Washington, DC, USA, 2010. IEEE Computer Society.

[27] V. Chipounov, V. Kuznetsov, and G. Candea. S2E: A Platform for In-vivo
Multi-path Analysis of Software Systems. In Proceedings of the Sixteenth
International Conference on Architectural Support for Programming Lan-
guages and Operating Systems, ASPLOS XVI, pages 265–278, New York,
NY, USA, 2011. ACM.

[28] L. Ciortea, C. Zamfir, S. Bucur, V. Chipounov, and G. Candea. Cloud9: A
Software Testing Service. SIGOPS Oper. Syst. Rev., 43(4):5–10, Jan. 2010.

[29] D. Clark, S. Hunt, and P. Malacaria. A static analysis for quantifying infor-
mation flow in a simple imperative language. J. Comput. Secur., 15(3):321–
371, Aug. 2007.

[30] E. S. Cohen. Information Transmission in Sequential Programs. In R. A.
DeMillo, D. P. Dobkin, A. K. Jones, and R. J. Lipton, editors, Foundations
of Secure Computation, pages 297–335. Academic Press, 1978.

[31] T. M. Cover and J. A. Thomas. Elements of information theory. Wiley-
Interscience, New York, NY, USA, 1991.

16



[32] A. Darvas, R. Hähnle, and D. Sands. A theorem proving approach to anal-
ysis of secure information flow. In Proceedings of the Second international
conference on Security in Pervasive Computing, SPC’05, pages 193–209,
Berlin, Heidelberg, 2005. Springer-Verlag.

[33] L. De Moura and N. Bjørner. Z3: an efficient SMT solver. In Proceed-
ings of the 14th international conference on Tools and algorithms for the
construction and analysis of systems, TACAS’08, pages 337–340, Berlin,
Heidelberg, 2008. Springer-Verlag.

[34] X. Deng, J. Lee, and Robby. Bogor/Kiasan: A K-bounded Symbolic Execu-
tion for Checking Strong Heap Properties of Open Systems. In Proceedings
of the 21st IEEE/ACM International Conference on Automated Software
Engineering, ASE ’06, pages 157–166, Washington, DC, USA, 2006. IEEE
Computer Society.

[35] X. Deng, Robby, and J. Hatcliff. Towards A Case-Optimal Symbolic Exe-
cution Algorithm for Analyzing Strong Properties of Object-Oriented Pro-
grams. In Proceedings of the Fifth IEEE International Conference on Soft-
ware Engineering and Formal Methods, SEFM ’07, pages 273–282, Wash-
ington, DC, USA, 2007. IEEE Computer Society.

[36] Q. H. Do, R. Bubel, and R. Hähnle. Exploit Generation for Information
Flow Leaks in Object-Oriented Programs. In ICT Systems Security and
Privacy Protection: 30th IFIP TC 11 International Conference, SEC 2015,
Hamburg, Germany, May 26-28, 2015, Proceedings, pages 401–415, Cham,
2015. Springer International Publishing.

[37] A. Filieri, C. S. Pasareanu, and W. Visser. Reliability analysis in sym-
bolic pathfinder. In 35th International Conference on Software Engineer-
ing, ICSE ’13, San Francisco, CA, USA, May 18-26, 2013, pages 622–631,
2013.

[38] A. Filieri, C. S. Păsăreanu, W. Visser, and J. Geldenhuys. Statistical Sym-
bolic Execution with Informed Sampling. In Proceedings of the 22Nd ACM
SIGSOFT International Symposium on Foundations of Software Engineer-
ing, FSE 2014, pages 437–448, New York, NY, USA, 2014. ACM.

[39] J. P. Galeotti, G. Fraser, and A. Arcuri. Improving search-based test suite
generation with dynamic symbolic execution. In 2013 IEEE 24th Inter-
national Symposium on Software Reliability Engineering (ISSRE), pages
360–369, Nov 2013.

[40] J. Geldenhuys, N. Aguirre, M. F. Frias, and W. Visser. Bounded Lazy
Initialization. In G. Brat, N. Rungta, and A. Venet, editors, NASA For-
mal Methods, 5th International Symposium, NFM 2013, Moffett Field, CA,
USA, May 14-16, 2013. Proceedings, pages 229–243, Berlin, Heidelberg,
2013. Springer Berlin Heidelberg.

17



[41] P. Godefroid. Compositional Dynamic Test Generation. In Proceedings
of the 34th Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL ’07, pages 47–54, New York, NY, USA,
2007. ACM.

[42] P. Godefroid, N. Klarlund, and K. Sen. DART: directed automated random
testing. PLDI ’05, pages 213–223. ACM, 2005.

[43] P. Godefroid, M. Y. Levin, and D. Molnar. SAGE: Whitebox Fuzzing for
Security Testing. Queue, 10(1):20:20–20:27, Jan. 2012.

[44] P. Godefroid and D. Luchaup. Automatic partial loop summarization in dy-
namic test generation. In Proceedings of the 20th International Symposium
on Software Testing and Analysis, ISSTA 2011, Toronto, ON, Canada,
July 17-21, 2011, pages 23–33, 2011.

[45] J. A. Goguen and J. Meseguer. Security Policies and Security Models. In
IEEE Symposium on Security and Privacy, pages 11–20, 1982.

[46] E. L. Gunter and D. Peled. Unit Checking: Symbolic Model Checking
for a Unit of Code. In N. Dershowitz, editor, Verification: Theory and
Practice, Essays Dedicated to Zohar Manna on the Occasion of His 64th

Birthday, volume 2772 of Lecture Notes in Computer Science, pages 548–
567. Springer, 2003.

[47] B. Hillery, E. Mercer, N. Rungta, and S. Person. Exact Heap Summaries for
Symbolic Execution. In Proceedings of the 17th International Conference on
Verification, Model Checking, and Abstract Interpretation - Volume 9583,
VMCAI 2016, pages 206–225, New York, NY, USA, 2016. Springer-Verlag
New York, Inc.

[48] S. S. Ishtiaq and P. W. O’Hearn. BI as an assertion language for mutable
data structures. In Proceedings of the 28th ACM SIGPLAN-SIGACT sym-
posium on Principles of programming languages, POPL ’01, pages 14–26,
New York, NY, USA, 2001. ACM.

[49] J. Jaffar, V. Murali, and J. A. Navas. Boosting concolic testing via interpo-
lation. In Joint Meeting of the European Software Engineering Conference
and the ACM SIGSOFT Symposium on the Foundations of Software En-
gineering, ESEC/FSE’13, Saint Petersburg, Russian Federation, August
18-26, 2013, pages 48–58, 2013.

[50] J. Jeon, K. K. Micinski, and J. S. Foster. SymDroid: Symbolic execution
for Dalvik bytecode. Technical report, 2012.

[51] D. Kebbal and P. Sainrat. Combining Symbolic Execution and Path Enu-
meration in Worst-Case Execution Time Analysis. In F. Mueller, edi-
tor, 6th International Workshop on Worst-Case Execution Time Analy-
sis (WCET’06), volume 4 of OpenAccess Series in Informatics (OASIcs),

18



Dagstuhl, Germany, 2006. Schloss Dagstuhl–Leibniz-Zentrum fuer Infor-
matik.

[52] D. Kebbal and P. Sainrat. Combining Symbolic Execution and Path Enu-
meration in Worst-Case Execution Time Analysis. In F. Mueller, edi-
tor, 6th International Workshop on Worst-Case Execution Time Analy-
sis (WCET’06), volume 4 of OpenAccess Series in Informatics (OASIcs),
Dagstuhl, Germany, 2006. Schloss Dagstuhl–Leibniz-Zentrum fuer Infor-
matik.

[53] J. Kelsey. Compression and Information Leakage of Plaintext. In Revised
Papers from the 9th International Workshop on Fast Software Encryption,
FSE ’02, pages 263–276, London, UK, UK, 2002. Springer-Verlag.

[54] R. Kersten, K. Luckow, and C. S. Păsăreanu. Poster: Afl-based fuzzing for
java with kelinci. In Proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security, CCS ’17, pages 2511–2513, New
York, NY, USA, 2017. ACM.

[55] S. Khurshid, C. S. Păsăreanu, and W. Visser. Generalized symbolic execu-
tion for model checking and testing. In Proceedings of the 9th international
conference on Tools and algorithms for the construction and analysis of sys-
tems, TACAS’03, pages 553–568, Berlin, Heidelberg, 2003. Springer-Verlag.

[56] A. King. Distributed parallel symbolic execution. In Master Thesis, Kansas
State University, 2009.

[57] J. C. King. Symbolic execution and program testing. Commun. ACM,
19(7):385–394, July 1976.

[58] J. Knoop, L. Kovács, and J. Zwirchmayr. WCET Squeezing: On-demand
Feasibility Refinement for Proven Precise WCET-bounds. In Proceedings
of the 21st International Conference on Real-Time Networks and Systems,
RTNS ’13, pages 161–170, New York, NY, USA, 2013. ACM.

[59] P. C. Kocher. Timing Attacks on Implementations of Diffie-Hellman, RSA,
DSS, and Other Systems. In Proceedings of the 16th Annual International
Cryptology Conference on Advances in Cryptology, CRYPTO ’96, pages
104–113, London, UK, UK, 1996. Springer-Verlag.

[60] B. Korel. A dynamic approach of test data generation. In Proceedings.
Conference on Software Maintenance 1990, pages 311–317, Nov 1990.

[61] V. Kuznetsov, J. Kinder, S. Bucur, and G. Candea. Efficient State Merging
in Symbolic Execution. In Proceedings of the 33rd ACM SIGPLAN Con-
ference on Programming Language Design and Implementation, PLDI ’12,
pages 193–204, New York, NY, USA, 2012. ACM.

[62] Q. L. Le, J. Sun, and W.-N. Chin. Satisfiability Modulo Heap-Based Pro-
grams, pages 382–404. Springer International Publishing, Cham, 2016.

19



[63] G. Li, I. Ghosh, and S. P. Rajan. KLOVER: a symbolic execution and au-
tomatic test generation tool for C++ programs. In Proceedings of the 23rd

international conference on Computer aided verification, CAV’11, pages
609–615, Berlin, Heidelberg, 2011. Springer-Verlag.

[64] D. Liew, C. Cadar, and A. F. Donaldson. Symbooglix: A Symbolic Execu-
tion Engine for Boogie Programs. In 2016 IEEE International Conference
on Software Testing, Verification and Validation (ICST), pages 45–56, Apr.
2016.

[65] K. Luckow, M. Dimjašević, D. Giannakopoulou, F. Howar, M. Isberner,
T. Kahsai, Z. Rakamarić, and V. Raman. JDart: A Dynamic Symbolic
Analysis Framework. In M. Chechik and J.-F. Raskin, editors, Proceedings
of the 22nd International Conference on Tools and Algorithms for the Con-
struction and Analysis of Systems (TACAS), volume 9636 of Lecture Notes
in Computer Science, pages 442–459. Springer, 2016.

[66] K. Luckow, R. Kersten, and C. Pasareanu. Symbolic Complexity Anal-
ysis using Context-preserving Histories. In Proceedings of the 10th IEEE
International Conference on Software Testing, Verification and Validation
(ICST 2017), 2017. To appear.

[67] K. S. Luckow, C. S. Păsăreanu, and B. Thomsen. Symbolic execution
and timed automata model checking for timing analysis of Java real-time
systems. EURASIP Journal on Embedded Systems, 2015(1):2, 2015.

[68] T. Lundqvist and P. Stenström. An Integrated Path and Timing Analysis
Method Based on Cycle-Level Symbolic Execution. Real-Time Systems,
17(2-3):183–207, Dec. 1999.

[69] P. Malacaria. Assessing security threats of looping constructs. In Proceed-
ings of the 34th annual ACM SIGPLAN-SIGACT symposium on Principles
of programming languages, POPL ’07, pages 225–235, New York, NY, USA,
2007. ACM.

[70] B. P. Miller, L. Fredriksen, and B. So. An Empirical Study of the Reliability
of UNIX Utilities. Commun. ACM, 33(12):32–44, Dec. 1990.

[71] L. H. Pham, Q. L. Le, Q.-S. Phan, J. Sun, and S. Qin. Enhancing Symbolic
Execution of Heap-based Programs with Separation Logic for Test Input
Generation. CoRR, abs/1712.06025, 2017.

[72] Q.-S. Phan. Self-composition by Symbolic Execution. In 2013 Imperial
College Computing Student Workshop, volume 35 of OpenAccess Series in
Informatics (OASIcs), pages 95–102, Dagstuhl, Germany, 2013. Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik.

[73] Q.-S. Phan, L. Bang, C. S. Păsăreanu, P. Malacaria, and T. Bultan. Syn-
thesis of Adaptive Side-Channel Attacks. In 2017 IEEE 30th Computer

20



Security Foundations Symposium (CSF), CSF ’17, Washington, DC, USA,
Aug. 2017. IEEE Computer Society.

[74] Q.-S. Phan and P. Malacaria. Abstract Model Counting: A Novel Ap-
proach for Quantification of Information Leaks. In Proceedings of the 9th

ACM Symposium on Information, Computer and Communications Secu-
rity, ASIA CCS ’14, pages 283–292, New York, NY, USA, 2014. ACM.

[75] Q.-S. Phan, P. Malacaria, C. S. Păsăreanu, and M. d’Amorim. Quantifying
Information Leaks Using Reliability Analysis. In Proceedings of the 2014
International SPIN Symposium on Model Checking of Software, SPIN 2014,
pages 105–108, New York, NY, USA, 2014. ACM.

[76] Q.-S. Phan, P. Malacaria, O. Tkachuk, and C. S. Păsăreanu. Symbolic
Quantitative Information Flow. SIGSOFT Softw. Eng. Notes, 37(6):1–5,
Nov. 2012.

[77] C. S. Păsăreanu, Q.-S. Phan, and P. Malacaria. Multi-run Side-Channel
Analysis Using Symbolic Execution and Max-SMT. In Proceedings of the
2016 IEEE 29th Computer Security Foundations Symposium, CSF ’16,
pages 387–400, Washington, DC, USA, June 2016. IEEE Computer So-
ciety.

[78] C. S. Păsăreanu, W. Visser, D. Bushnell, J. Geldenhuys, P. Mehlitz, and
N. Rungta. Symbolic PathFinder: integrating symbolic execution with
model checking for Java bytecode analysis. Automated Software Engineer-
ing, pages 1–35, 2013.

[79] R. Qiu, G. Yang, C. S. Pasareanu, and S. Khurshid. Compositional Sym-
bolic Execution with Memoized Replay. In 37th IEEE/ACM International
Conference on Software Engineering, ICSE 2015, Florence, Italy, May 16-
24, 2015, Volume 1, pages 632–642, 2015.

[80] J. Reynolds. Separation Logic: A Logic for Shared Mutable Data Struc-
tures. In LICS, pages 55–74, 2002.

[81] P. Saxena, D. Akhawe, S. Hanna, F. Mao, S. McCamant, and D. Song.
A Symbolic Execution Framework for JavaScript. In Proceedings of the
2010 IEEE Symposium on Security and Privacy, SP ’10, pages 513–528,
Washington, DC, USA, 2010. IEEE Computer Society.

[82] K. Sen, D. Marinov, and G. Agha. CUTE: a concolic unit testing engine for
C. In Proceedings of the 13th ACM SIGSOFT international symposium on
Foundations of software engineering, ESEC/FSE-13, pages 263–272, New
York, NY, USA, 2005. ACM.

[83] K. Sen, G. Necula, L. Gong, and W. Choi. MultiSE: Multi-path Symbolic
Execution Using Value Summaries. In Proceedings of the 2015 10th Joint
Meeting on Foundations of Software Engineering, ESEC/FSE 2015, pages
842–853, New York, NY, USA, 2015. ACM.

21



[84] J. Siddiqui and S. Khurshid. ParSym: Parallel symbolic execution. In
ICSTE, volume 1, pages V1–405–V1–409, 2010.

[85] D. Song, D. Brumley, H. Yin, J. Caballero, I. Jager, M. G. Kang, Z. Liang,
J. Newsome, P. Poosankam, and P. Saxena. BitBlaze: A New Approach
to Computer Security via Binary Analysis, pages 1–25. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2008.

[86] M. Souza, M. Borges, M. d’Amorim, and C. S. Păsăreanu. CORAL: Solving
Complex Constraints for Symbolic Pathfinder. In Proceedings of the Third
International Conference on NASA Formal Methods, NFM’11, pages 359–
374, Berlin, Heidelberg, 2011. Springer-Verlag.

[87] M. Staats and C. Pǎsǎreanu. Parallel symbolic execution for structural test
generation. ISSTA ’10, pages 183–194, New York, NY, USA, 2010. ACM.

[88] F. Stappert and P. Altenbernd. Complete worst-case execution time anal-
ysis of straight-line hard real-time programs. Journal of Systems Architec-
ture, 46(4):339 – 355, 2000.

[89] N. Stephens, J. Grosen, C. Salls, A. Dutcher, R. Wang, J. Corbetta,
Y. Shoshitaishvili, C. Kruegel, and G. Vigna. Driller: Augmenting Fuzzing
Through Selective Symbolic Execution. In 23nd Annual Network and Dis-
tributed System Security Symposium, NDSS 2016, San Diego, California,
USA, February 21-24, 2016, 2016.

[90] M. Sutton, A. Greene, and P. Amini. Fuzzing: brute force vulnerability
discovery. Pearson Education, 2007.

[91] W. Visser, J. Geldenhuys, and M. B. Dwyer. Green: reducing, reusing
and recycling constraints in program analysis. In Proceedings of the ACM
SIGSOFT 20th International Symposium on the Foundations of Software
Engineering, FSE ’12, pages 58:1–58:11, New York, NY, USA, 2012. ACM.

[92] W. Visser, C. S. Pǎsǎreanu, and S. Khurshid. Test Input Generation with
Java PathFinder. In Proceedings of the 2004 ACM SIGSOFT International
Symposium on Software Testing and Analysis, ISSTA ’04, pages 97–107,
New York, NY, USA, 2004. ACM.

[93] G. Yang, C. S. Păsăreanu, and S. Khurshid. Memoized Symbolic Execution.
In Proceedings of the 2012 International Symposium on Software Testing
and Analysis, ISSTA 2012, pages 144–154, New York, NY, USA, 2012.
ACM.

[94] M. Zalewski. American Fuzzy Lop (AFL). http://lcamtuf.coredump.

cx/afl/, 2017. Accessed August 11, 2017.

[95] P. Zhang, S. Elbaum, and M. B. Dwyer. Automatic Generation of Load
Tests. In Proceedings of the 2011 26th IEEE/ACM International Conference
on Automated Software Engineering, ASE ’11, pages 43–52, Washington,
DC, USA, 2011. IEEE Computer Society.

22

http://lcamtuf.coredump.cx/afl/
http://lcamtuf.coredump.cx/afl/


[96] Y. Zheng, X. Zhang, and V. Ganesh. Z3-str: A Z3-based String Solver for
Web Application Analysis. In Proceedings of the 2013 9th Joint Meeting
on Foundations of Software Engineering, ESEC/FSE 2013, pages 114–124,
New York, NY, USA, 2013. ACM.

23


	Introduction
	Symbolic Execution
	Complex heap data structures

	Tools and Scalability Challenges
	Challenges

	Applications
	Worst-Case Execution Time (WCET) Analysis
	Performance Testing
	Security Analysis
	Symbolic Execution and Fuzzing

	Conclusion

